Suppr超能文献

使用混合量子近似线性系统求解器在量子硬件上求解线性系统。

Solving linear systems on quantum hardware with hybrid HHL.

作者信息

Yalovetzky Romina, Minssen Pierre, Herman Dylan, Pistoia Marco

机构信息

Global Technology Applied Research, JPMorganChase, New York, NY, 10017, USA.

出版信息

Sci Rep. 2024 Sep 10;14(1):20610. doi: 10.1038/s41598-024-69077-0.

Abstract

The limited capabilities of current quantum hardware significantly constrain the scale of experimental demonstrations of most quantum algorithmic primitives. This makes it challenging to perform benchmarking of the current hardware using useful quantum algorithms, i.e., application-oriented benchmarking. In particular, the Harrow-Hassidim-Lloyd (HHL) algorithm is a critical quantum linear algebra primitive, but the majority of the components of HHL are far out of the reach of noisy intermediate-scale quantum devices, which has led to the proposal of hybrid classical-quantum variants. The goal of this work is to further bridge the gap between proposed near-term friendly implementations of HHL and the kinds of quantum circuits that can be executed on noisy hardware. Our proposal adds to the existing literature of hybrid quantum algorithms for linear algebra that are more compatible with the current scale of quantum devices. Specifically, we propose two modifications to the Hybrid HHL algorithm proposed by Lee et al., leading to our algorithm Hybrid : (1) propose a novel algorithm for determining a scaling factor for the linear system matrix that maximizes the utility of the amount of ancillary qubits allocated to the phase estimation component of HHL, and (2) introduce a heuristic for compressing the HHL circuit. We demonstrate the efficacy of our work by running our modified Hybrid HHL on Quantinuum System Model H-series trapped-ion quantum computers to solve different problem instances of small-scale portfolio optimization problems, leading to the largest experimental demonstrations of HHL for an application to date.

摘要

当前量子硬件的有限能力严重限制了大多数量子算法原语的实验演示规模。这使得使用有用的量子算法对当前硬件进行基准测试具有挑战性,即面向应用的基准测试。特别是,哈罗-哈西迪姆-劳埃德(HHL)算法是一种关键的量子线性代数原语,但HHL的大多数组件远远超出了有噪声的中等规模量子设备的能力范围,这导致了混合经典-量子变体的提出。这项工作的目标是进一步弥合HHL的近期友好实现方案与可在有噪声硬件上执行的量子电路类型之间的差距。我们的方案补充了现有的更适合当前量子设备规模的线性代数混合量子算法文献。具体来说,我们对李等人提出的混合HHL算法提出了两处修改,从而得到我们的算法Hybrid :(1)提出一种新颖的算法来确定线性系统矩阵的缩放因子,以使分配给HHL相位估计组件的辅助量子比特数量的效用最大化;(2)引入一种启发式方法来压缩HHL电路。我们通过在昆腾系统模型H系列囚禁离子量子计算机上运行我们修改后的混合HHL算法来解决小规模投资组合优化问题的不同实例,证明了我们工作的有效性,这导致了迄今为止HHL在应用方面最大规模的实验演示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ac2/11387654/e5ce78432a07/41598_2024_69077_Fig1_HTML.jpg

相似文献

1
Solving linear systems on quantum hardware with hybrid HHL.
Sci Rep. 2024 Sep 10;14(1):20610. doi: 10.1038/s41598-024-69077-0.
2
Improved circuit implementation of the HHL algorithm and its simulations on QISKIT.
Sci Rep. 2022 Aug 2;12(1):13287. doi: 10.1038/s41598-022-17660-8.
3
Hybrid quantum linear equation algorithm and its experimental test on IBM Quantum Experience.
Sci Rep. 2019 Mar 18;9(1):4778. doi: 10.1038/s41598-019-41324-9.
4
How a Quantum Computer Could Quantify Uncertainty in Microkinetic Models.
J Phys Chem Lett. 2021 Jul 29;12(29):6955-6960. doi: 10.1021/acs.jpclett.1c01917. Epub 2021 Jul 20.
5
Variational quantum non-orthogonal optimization.
Sci Rep. 2023 Jun 17;13(1):9840. doi: 10.1038/s41598-023-37068-2.
6
A quantum algorithm for heat conduction with symmetrization.
Sci Bull (Beijing). 2023 Mar 15;68(5):494-502. doi: 10.1016/j.scib.2023.02.016. Epub 2023 Feb 16.
7
Fusing the single-excitation subspace with [Formula: see text].
Sci Rep. 2021 Jan 11;11(1):402. doi: 10.1038/s41598-020-79853-3.
8
Variational algorithms for linear algebra.
Sci Bull (Beijing). 2021 Nov 15;66(21):2181-2188. doi: 10.1016/j.scib.2021.06.023. Epub 2021 Jun 26.
9
Evidence of scaling advantage for the quantum approximate optimization algorithm on a classically intractable problem.
Sci Adv. 2024 May 31;10(22):eadm6761. doi: 10.1126/sciadv.adm6761. Epub 2024 May 29.
10
Solving Systems of Linear Equations with a Superconducting Quantum Processor.
Phys Rev Lett. 2017 May 26;118(21):210504. doi: 10.1103/PhysRevLett.118.210504.

本文引用的文献

1
Improved circuit implementation of the HHL algorithm and its simulations on QISKIT.
Sci Rep. 2022 Aug 2;12(1):13287. doi: 10.1038/s41598-022-17660-8.
2
Quantum computational advantage with a programmable photonic processor.
Nature. 2022 Jun;606(7912):75-81. doi: 10.1038/s41586-022-04725-x. Epub 2022 Jun 1.
3
Strong Quantum Computational Advantage Using a Superconducting Quantum Processor.
Phys Rev Lett. 2021 Oct 29;127(18):180501. doi: 10.1103/PhysRevLett.127.180501.
4
Exploiting Dynamic Quantum Circuits in a Quantum Algorithm with Superconducting Qubits.
Phys Rev Lett. 2021 Sep 3;127(10):100501. doi: 10.1103/PhysRevLett.127.100501.
5
Demonstration of the trapped-ion quantum CCD computer architecture.
Nature. 2021 Apr;592(7853):209-213. doi: 10.1038/s41586-021-03318-4. Epub 2021 Apr 7.
6
Quantum supremacy using a programmable superconducting processor.
Nature. 2019 Oct;574(7779):505-510. doi: 10.1038/s41586-019-1666-5. Epub 2019 Oct 23.
7
Hybrid quantum linear equation algorithm and its experimental test on IBM Quantum Experience.
Sci Rep. 2019 Mar 18;9(1):4778. doi: 10.1038/s41598-019-41324-9.
8
9
Quantum algorithm for linear systems of equations.
Phys Rev Lett. 2009 Oct 9;103(15):150502. doi: 10.1103/PhysRevLett.103.150502. Epub 2009 Oct 7.
10
Quantum fingerprinting.
Phys Rev Lett. 2001 Oct 15;87(16):167902. doi: 10.1103/PhysRevLett.87.167902. Epub 2001 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验