Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Appl Environ Microbiol. 2024 Oct 23;90(10):e0101224. doi: 10.1128/aem.01012-24. Epub 2024 Sep 11.
Bioconversion of abundant lactose-replete whey permeate to value-added chemicals holds promise for valorization of this expanding food processing waste. Efficient conversion of whey permeate-borne lactose requires adroit microbial engineering to direct carbon to the desired chemical. An engineered strain of NCIMB 8052 (_mgsA+mgR) that produces 87% more butanol on lactose than the control strain was assessed for global transcriptomic changes. The results revealed broadly contrasting gene expression patterns in _mgsA+mgR relative to the control strain. These were characterized by widespread decreases in the abundance of mRNAs of Fe-S proteins in _mgsA+mgR, coupled with increased differential expression of lactose uptake and catabolic genes, iron uptake genes, two-component signal transduction and motility genes, and genes involved in the biosynthesis of vitamins B and B, aromatic amino acids (particularly tryptophan), arginine, and pyrimidines. Conversely, the mRNA patterns suggest that the L-aspartate-dependent biosynthesis of NAD as well as biosynthesis of lysine and asparagine and metabolism of glycine and threonine were likely down-regulated. Furthermore, genes involved in cysteine and methionine biosynthesis and metabolism, including cysteine desulfurase-a central player in Fe-S cluster biosynthesis-equally showed reductions in mRNA abundance. Genes involved in biosynthesis of capsular polysaccharides and stress response also showed reduced mRNA abundance in _mgsA+mgR. The results suggest that remodeling of cellular and metabolic networks in _mgsA+mgR to counter anticipated effects of methylglyoxal production from heterologous expression of methylglyoxal synthase led to enhanced growth and butanol production in _mgsA+mgR.
Biological production of commodity chemicals from abundant waste streams such as whey permeate represents an opportunity for decarbonizing chemical production. Whey permeate remains a vastly underutilized feedstock for bioproduction purposes. Thus, enhanced understanding of the cellular and metabolic repertoires of lactose-mediated production of chemicals such as butanol promises to identify new targets that can be fine tuned in recombinant and native microbial strains to engender stronger coupling of whey permeate-borne lactose to value-added chemicals. Our results highlight new genetic targets for future engineering of for improved butanol production on lactose and ultimately in whey permeate.
将丰富的含乳糖乳清渗透物转化为高附加值化学品,有望实现这种不断扩大的食品加工废物的增值。有效地将乳清渗透物中携带的乳糖转化为所需的化学物质,需要巧妙的微生物工程来引导碳进入所需的化学物质。评估了一种工程菌株 NCIMB 8052(_mgsA+mgR),该菌株在乳糖上生产的丁醇比对照菌株多 87%,用于评估其全基因组转录组变化。结果表明,_mgsA+mgR 与对照菌株的基因表达模式广泛相反。这些特征是 Fe-S 蛋白的 mRNA 丰度广泛降低,同时乳糖摄取和分解代谢基因、铁摄取基因、双组分信号转导和运动基因以及参与维生素 B 和 B、芳香族氨基酸(特别是色氨酸)、精氨酸和嘧啶生物合成的基因的差异表达增加。相反,mRNA 模式表明,L-天冬氨酸依赖的 NAD 生物合成以及赖氨酸和天冬酰胺的生物合成和甘氨酸和苏氨酸的代谢可能受到下调。此外,半胱氨酸和蛋氨酸生物合成和代谢相关的基因,包括半胱氨酸脱硫酶——Fe-S 簇生物合成的核心酶,同样显示 mRNA 丰度降低。参与荚膜多糖生物合成和应激反应的基因在 _mgsA+mgR 中的 mRNA 丰度也降低。结果表明,在 _mgsA+mgR 中重塑细胞和代谢网络,以抵消异源表达甲基乙二醛合酶产生的甲基乙二醛的预期影响,导致 _mgsA+mgR 中的生长和丁醇产量增强。
从乳清渗透物等丰富的废物流中生物生产商品化学品为化学生产脱碳提供了机会。乳清渗透物仍然是生物生产目的的一种极未充分利用的原料。因此,增强对乳糖介导的化学物质(如丁醇)生产的细胞和代谢途径的理解,有望确定新的目标,可以在重组和天然微生物菌株中进行微调,以增强乳清渗透物中携带的乳糖与高附加值化学品的耦合。我们的研究结果突出了用于改善乳糖上丁醇生产并最终在乳清渗透物中的生产的新的遗传靶标。