Suppr超能文献

联合进化工程和遗传操作提高了合成微生物 Clostridium 群落的低 pH 耐受性和丁醇生产能力。

Combined evolutionary engineering and genetic manipulation improve low pH tolerance and butanol production in a synthetic microbial Clostridium community.

机构信息

School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, China.

Department of Bioengineering, Imperial College London, London, UK.

出版信息

Biotechnol Bioeng. 2020 Jul;117(7):2008-2022. doi: 10.1002/bit.27333. Epub 2020 Apr 9.

Abstract

Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single-specie cultures. A paradigmatic example is Clostridium cellulovorans DSM 743B, which can decompose lignocellulose but cannot produce butanol. Clostridium beijerinckii NCIMB 8052 however, is unable to use lignocellulose but can produce high amounts of butanol from simple sugars. In our previous studies, both organisms were cocultured to produce butanol by consolidated bioprocessing. However, such consolidated bioprocessing implementation strongly depends on pH regulation. Since low pH (pH 4.5-5.5) is required for butanol fermentation, C. cellulovorans cannot grow well and saccharify sufficient lignocellulose to feed both strains at a pH below 6.4. To overcome this bottleneck, this study engineered C. cellulovorans by adaptive laboratory evolution, inactivating cell wall lyases genes (Clocel_0798 and Clocel_2169), and overexpressing agmatine deiminase genes (augA, encoded by Cbei_1922) from C. beijerinckii NCIMB 8052. The generated strain WZQ36: 743B6.03△lyt0798△lyt2169-(pXY1-P -augA) can tolerate a pH of 5.5. Finally, the alcohol aldehyde dehydrogenase gene adhE1 from Clostridium acetobutylicum ATCC 824 was introduced into the strain to enable butanol production at low pH, in coordination with solvent fermentation of C. beijerinckii in consortium. The engineered consortium produced 3.94 g/L butanol without pH control within 83 hr, which is more than 5-fold of the level achieved by wild consortia under the same conditions. This exploration represents a proof of concept on how to combine metabolic and evolutionary engineering to coordinate coculture of a synthetic microbial community.

摘要

合成微生物群落已成为生物技术研究的焦点,因为它们可以克服单种培养的许多限制。一个典型的例子是 Clostridium cellulovorans DSM 743B,它可以分解木质纤维素,但不能生产丁醇。然而,Clostridium beijerinckii NCIMB 8052 无法利用木质纤维素,但可以从简单的糖中产生大量的丁醇。在我们之前的研究中,这两种生物都被共培养,通过整合生物加工来生产丁醇。然而,这种整合生物加工的实施强烈依赖于 pH 值的调节。由于丁醇发酵需要低 pH(4.5-5.5),C. cellulovorans 不能很好地生长,并且不能糖化足够的木质纤维素,以使两种菌株在低于 6.4 的 pH 值下得到充分的供应。为了克服这个瓶颈,本研究通过适应性实验室进化工程改造了 C. cellulovorans,失活了细胞壁裂解酶基因(Clocel_0798 和 Clocel_2169),并过表达了来自 C. beijerinckii NCIMB 8052 的胍基丁胺脱氨酶基因(augA,由 Cbei_1922 编码)。生成的菌株 WZQ36:743B6.03△lyt0798△lyt2169-(pXY1-P-augA)可以耐受 pH 值为 5.5。最后,将来自 Clostridium acetobutylicum ATCC 824 的醇醛脱氢酶基因 adhE1 引入该菌株,使其能够在低 pH 值下生产丁醇,与 consortium 中 C. beijerinckii 的溶剂发酵相协调。在 83 小时内,该工程菌无需 pH 控制即可产生 3.94 g/L 的丁醇,比相同条件下野生菌的产量高 5 倍以上。这项探索代表了一种概念验证,即如何结合代谢工程和进化工程来协调合成微生物群落的共培养。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验