Department of Biology, Brigham Young University, Provo, United States.
Elife. 2024 Sep 11;13:RP95524. doi: 10.7554/eLife.95524.
To help maximize the impact of scientific journal articles, authors must ensure that article figures are accessible to people with color-vision deficiencies (CVDs), which affect up to 8% of males and 0.5% of females. We evaluated images published in biology- and medicine-oriented research articles between 2012 and 2022. Most included at least one color contrast that could be problematic for people with deuteranopia ('deuteranopes'), the most common form of CVD. However, spatial distances and within-image labels frequently mitigated potential problems. Initially, we reviewed 4964 images from , comparing each against a simulated version that approximated how it might appear to deuteranopes. We identified 636 (12.8%) images that we determined would be difficult for deuteranopes to interpret. Our findings suggest that the frequency of this problem has decreased over time and that articles from cell-oriented disciplines were most often problematic. We used machine learning to automate the identification of problematic images. For a hold-out test set from (n=879), a convolutional neural network classified the images with an area under the precision-recall curve of 0.75. The same network classified images from PubMed Central (n=1191) with an area under the precision-recall curve of 0.39. We created a Web application (https://bioapps.byu.edu/colorblind_image_tester); users can upload images, view simulated versions, and obtain predictions. Our findings shed new light on the frequency and nature of scientific images that may be problematic for deuteranopes and motivate additional efforts to increase accessibility.
为了最大程度地提高科学期刊文章的影响力,作者必须确保文章中的图像能够被有色觉缺陷(CVD)的人访问,这种缺陷影响了多达 8%的男性和 0.5%的女性。我们评估了 2012 年至 2022 年期间发表在生物学和医学研究文章中的图像。大多数图像至少包含一种可能对红绿色盲(deuteranopes)患者有问题的颜色对比,deuteranopes 是最常见的 CVD 形式。然而,空间距离和图像内标签经常减轻了潜在的问题。最初,我们对来自 的 4964 个图像进行了审查,将每个图像与模拟版本进行比较,模拟版本近似于它在 deuteranopes 眼中的样子。我们确定了 636 个(12.8%)图像对 deuteranopes 来说难以解读。我们的研究结果表明,这个问题的频率随着时间的推移而降低,而且来自细胞定向学科的文章最常出现问题。我们使用机器学习来自动化识别有问题的图像。对于来自 的一个独立测试集(n=879),一个卷积神经网络对图像的分类准确率为 0.75。同一个网络对来自 PubMed Central(n=1191)的图像进行分类,准确率为 0.39。我们创建了一个 Web 应用程序(https://bioapps.byu.edu/colorblind_image_tester);用户可以上传图像,查看模拟版本,并获得预测。我们的研究结果揭示了可能对红绿色盲患者有问题的科学图像的频率和性质,并激励了更多的努力来提高可访问性。