Suppr超能文献

拟南芥光敏色素 A 的结构揭示了植物光受体异构体之间的拓扑和功能多样化。

The structure of Arabidopsis phytochrome A reveals topological and functional diversification among the plant photoreceptor isoforms.

机构信息

Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.

Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.

出版信息

Nat Plants. 2023 Jul;9(7):1116-1129. doi: 10.1038/s41477-023-01435-8. Epub 2023 Jun 8.

Abstract

Plants employ a divergent cohort of phytochrome (Phy) photoreceptors to govern many aspects of morphogenesis through reversible photointerconversion between inactive Pr and active Pfr conformers. The two most influential are PhyA whose retention of Pfr enables sensation of dim light, while the relative instability of Pfr for PhyB makes it better suited for detecting full sun and temperature. To better understand these contrasts, we solved, by cryo-electron microscopy, the three-dimensional structure of full-length PhyA as Pr. Like PhyB, PhyA dimerizes through head-to-head assembly of its C-terminal histidine kinase-related domains (HKRDs), while the remainder assembles as a head-to-tail light-responsive platform. Whereas the platform and HKRDs associate asymmetrically in PhyB dimers, these lopsided connections are absent in PhyA. Analysis of truncation and site-directed mutants revealed that this decoupling and altered platform assembly have functional consequences for Pfr stability of PhyA and highlights how plant Phy structural diversification has extended light and temperature perception.

摘要

植物利用大量不同的光敏色素(Phytochrome,Phy)光受体,通过非活性 Pr 与活性 Pfr 构象之间的可逆光互变来调控形态发生的许多方面。其中两个最具影响力的是 PhyA,它保留 Pfr 以感知弱光,而 Pfr 在 PhyB 中相对不稳定,使其更适合检测全日照和温度。为了更好地理解这些差异,我们通过低温电子显微镜解析了全长 PhyA 作为 Pr 的三维结构。与 PhyB 一样,PhyA 通过其 C 端组氨酸激酶相关结构域(Histidine kinase-related domains,HKRDs)的头对头组装二聚化,而其余部分则作为头尾光响应平台组装。虽然平台和 HKRDs 在 PhyB 二聚体中不对称地结合,但这种不平衡的连接在 PhyA 中不存在。截短和定点突变分析表明,这种解耦和改变的平台组装对 PhyA 的 Pfr 稳定性具有功能影响,并突出了植物 Phy 结构多样化如何扩展了对光和温度的感知。

相似文献

2
Plant phytochrome B is an asymmetric dimer with unique signalling potential.
Nature. 2022 Apr;604(7904):127-133. doi: 10.1038/s41586-022-04529-z. Epub 2022 Mar 30.
6
A rice phytochrome A in Arabidopsis: The Role of the N-terminus under red and far-red light.
Mol Plant. 2008 Jan;1(1):84-102. doi: 10.1093/mp/ssm010. Epub 2007 Oct 31.
7
Phytochrome B integrates light and temperature signals in Arabidopsis.
Science. 2016 Nov 18;354(6314):897-900. doi: 10.1126/science.aaf5656. Epub 2016 Oct 27.
9
A novel high-throughput in vivo molecular screen for shade avoidance mutants identifies a novel phyA mutation.
J Exp Bot. 2011 May;62(8):2973-87. doi: 10.1093/jxb/err062. Epub 2011 Mar 11.

引用本文的文献

1
Review of protein structure-based analyses that illuminate plant stress mechanisms.
Comput Struct Biotechnol J. 2025 Jul 13;27:3155-3166. doi: 10.1016/j.csbj.2025.07.021. eCollection 2025.
2
Pr and Pfr structures of plant phytochrome A.
Nat Commun. 2025 Jun 21;16(1):5319. doi: 10.1038/s41467-025-60738-w.
3
Structural insight into PIF6-mediated red light signal transduction of plant phytochrome B.
Cell Discov. 2025 May 22;11(1):51. doi: 10.1038/s41421-025-00802-3.
5
Plant Phytochrome Interactions Decode Light and Temperature Signals.
Plant Cell. 2024 Sep 11;36(12):4819-39. doi: 10.1093/plcell/koae249.
7
Light signaling in plants-a selective history.
Plant Physiol. 2024 Apr 30;195(1):213-231. doi: 10.1093/plphys/kiae110.
8
Phytochrome-Interacting Proteins.
Biomolecules. 2023 Dec 21;14(1):9. doi: 10.3390/biom14010009.

本文引用的文献

1
Plant phytochrome B is an asymmetric dimer with unique signalling potential.
Nature. 2022 Apr;604(7904):127-133. doi: 10.1038/s41586-022-04529-z. Epub 2022 Mar 30.
3
DeepEMhancer: a deep learning solution for cryo-EM volume post-processing.
Commun Biol. 2021 Jul 15;4(1):874. doi: 10.1038/s42003-021-02399-1.
5
High-resolution crystal structures of transient intermediates in the phytochrome photocycle.
Structure. 2021 Jul 1;29(7):743-754.e4. doi: 10.1016/j.str.2021.03.004. Epub 2021 Mar 22.
6
3D variability analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM.
J Struct Biol. 2021 Jun;213(2):107702. doi: 10.1016/j.jsb.2021.107702. Epub 2021 Feb 11.
7
Signaling Mechanism of Phytochromes in Solution.
Structure. 2021 Feb 4;29(2):151-160.e3. doi: 10.1016/j.str.2020.08.009. Epub 2020 Sep 10.
8
Structural insights into photoactivation and signalling in plant phytochromes.
Nat Plants. 2020 May;6(5):581-588. doi: 10.1038/s41477-020-0638-y. Epub 2020 May 4.
9
Improved protein structure prediction using predicted interresidue orientations.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1496-1503. doi: 10.1073/pnas.1914677117. Epub 2020 Jan 2.
10
Photoreversible interconversion of a phytochrome photosensory module in the crystalline state.
Proc Natl Acad Sci U S A. 2020 Jan 7;117(1):300-307. doi: 10.1073/pnas.1912041116. Epub 2019 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验