Suppr超能文献

人工智能在儿童近视中的应用:当前趋势与未来方向。

Artificial intelligence in myopia in children: current trends and future directions.

机构信息

Singapore National Eye Centre, Singapore.

Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University.

出版信息

Curr Opin Ophthalmol. 2024 Nov 1;35(6):463-471. doi: 10.1097/ICU.0000000000001086. Epub 2024 Aug 26.

Abstract

PURPOSE OF REVIEW

Myopia is one of the major causes of visual impairment globally, with myopia and its complications thus placing a heavy healthcare and economic burden. With most cases of myopia developing during childhood, interventions to slow myopia progression are most effective when implemented early. To address this public health challenge, artificial intelligence has emerged as a potential solution in childhood myopia management.

RECENT FINDINGS

The bulk of artificial intelligence research in childhood myopia was previously focused on traditional machine learning models for the identification of children at high risk for myopia progression. Recently, there has been a surge of literature with larger datasets, more computational power, and more complex computation models, leveraging artificial intelligence for novel approaches including large-scale myopia screening using big data, multimodal data, and advancing imaging technology for myopia progression, and deep learning models for precision treatment.

SUMMARY

Artificial intelligence holds significant promise in transforming the field of childhood myopia management. Novel artificial intelligence modalities including automated machine learning, large language models, and federated learning could play an important role in the future by delivering precision medicine, improving health literacy, and allowing the preservation of data privacy. However, along with these advancements in technology come practical challenges including regulation and clinical integration.

摘要

目的综述

近视是全球视力损害的主要原因之一,因此近视及其并发症给医疗保健和经济带来了沉重负担。由于大多数近视发生在儿童时期,因此早期实施干预措施以减缓近视进展最为有效。为了解决这一公共卫生挑战,人工智能已成为儿童近视管理的潜在解决方案。

最近的发现

人工智能在儿童近视方面的研究主要集中在用于识别近视进展高风险儿童的传统机器学习模型上。最近,随着更多的数据集、更多的计算能力和更复杂的计算模型,利用人工智能进行包括使用大数据、多模态数据进行大规模近视筛查、推进近视进展成像技术以及进行精准治疗的深度学习模型等新型方法的文献大量涌现。

总结

人工智能在儿童近视管理领域具有巨大的应用潜力。新的人工智能模式,包括自动化机器学习、大型语言模型和联邦学习,通过提供精准医疗、提高健康素养以及允许数据隐私保护,未来可能会发挥重要作用。然而,这些技术进步带来了实际挑战,包括监管和临床整合。

相似文献

2
Artificial intelligence in myopia: current and future trends.人工智能与近视:现状与未来趋势
Curr Opin Ophthalmol. 2021 Sep 1;32(5):413-424. doi: 10.1097/ICU.0000000000000791.
3
Insights into artificial intelligence in myopia management: from a data perspective.人工智能在近视管理中的应用:从数据角度的洞察。
Graefes Arch Clin Exp Ophthalmol. 2024 Jan;262(1):3-17. doi: 10.1007/s00417-023-06101-5. Epub 2023 May 25.
4
Artificial intelligence and digital solutions for myopia.近视的人工智能与数字解决方案
Taiwan J Ophthalmol. 2023 May 16;13(2):142-150. doi: 10.4103/tjo.TJO-D-23-00032. eCollection 2023 Apr-Jun.
5
Applications of Artificial Intelligence in Myopia: Current and Future Directions.人工智能在近视中的应用:现状与未来方向
Front Med (Lausanne). 2022 Mar 11;9:840498. doi: 10.3389/fmed.2022.840498. eCollection 2022.
6
Artificial intelligence and machine learning for anaphylaxis algorithms.人工智能和机器学习在过敏算法中的应用。
Curr Opin Allergy Clin Immunol. 2024 Oct 1;24(5):305-312. doi: 10.1097/ACI.0000000000001015. Epub 2024 Jul 24.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验