Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States.
Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, United States.
Stem Cells Transl Med. 2024 Nov 12;13(11):1144-1159. doi: 10.1093/stcltm/szae067.
Cardiopoiesis-primed human stem cells exert sustained benefit in treating heart failure despite limited retention following myocardial delivery. To assess potential paracrine contribution, the secretome of cardiopoiesis conditioned versus naïve human mesenchymal stromal cells was decoded by directed proteomics augmented with machine learning and systems interrogation. Cardiopoiesis doubled cellular protein output generating a distinct secretome that segregated the conditioned state. Altering the expression of 1035 secreted proteins, cardiopoiesis reshaped the secretome across functional classes. The resolved differential cardiopoietic secretome was enriched in mesoderm development and cardiac progenitor signaling processes, yielding a cardiovasculogenic profile bolstered by upregulated cardiogenic proteins. In tandem, cardiopoiesis enhanced the secretion of immunomodulatory proteins associated with cytokine signaling, leukocyte migration, and chemotaxis. Network analysis integrated the differential secretome within an interactome of 1745 molecules featuring prioritized regenerative processes. Secretome contribution to the repair signature of cardiopoietic cell-treated infarcted hearts was assessed in a murine coronary ligation model. Intramyocardial delivery of cardiopoietic cells improved the performance of failing hearts, with undirected proteomics revealing 50 myocardial proteins responsive to cell therapy. Pathway analysis linked the secretome to cardiac proteome remodeling, pinpointing 17 cardiopoiesis-upregulated secretome proteins directly upstream of 44% of the cell therapy-responsive cardiac proteome. Knockout, in silico, of this 22-protein secretome-dependent myocardial ensemble eliminated indices of the repair signature. Accordingly, in vivo, cell therapy rendered the secretome-dependent myocardial proteome of an infarcted heart indiscernible from healthy counterparts. Thus, the secretagogue effect of cardiopoiesis transforms the human stem cell secretome, endows regenerative competency, and upregulates candidate paracrine effectors of cell therapy-mediated molecular restitution.
人心肌生成诱导的人干细胞在治疗心力衰竭方面具有持续的益处,尽管在心肌递送后其保留有限。为了评估潜在的旁分泌贡献,通过定向蛋白质组学增强机器学习和系统询问来解码人心肌生成诱导与幼稚的人间充质基质细胞的分泌组。人心肌生成使细胞蛋白产量增加一倍,产生了一个独特的分泌组,将诱导状态分开。改变 1035 种分泌蛋白的表达,人心肌生成重塑了整个功能类别中的分泌组。解析的差异人心肌分泌组富含中胚层发育和心脏祖细胞信号转导过程,产生了一个由上调的心脏生成蛋白增强的心血管生成谱。与此同时,人心肌生成增强了与细胞因子信号、白细胞迁移和趋化作用相关的免疫调节蛋白的分泌。网络分析将差异分泌组集成到一个由 1745 种分子组成的相互作用组中,这些分子具有优先的再生过程。在小鼠冠状动脉结扎模型中评估了人心肌生成细胞处理梗死心脏的修复特征的分泌组贡献。心肌内递送人心肌生成细胞改善了衰竭心脏的功能,未定向蛋白质组学揭示了 50 种对细胞治疗有反应的心肌蛋白。通路分析将分泌组与心脏蛋白质组重塑联系起来,确定了 17 种人心肌生成上调的分泌组蛋白,直接位于 44%的细胞治疗反应性心脏蛋白质组的上游。对该 22 种分泌组依赖性心肌合奏的基因敲除,消除了修复特征的指标。因此,在体内,细胞治疗使梗死心脏的分泌组依赖性心肌蛋白质组与健康对照组无法区分。因此,人心肌生成的分泌效应改变了人干细胞的分泌组,赋予了再生能力,并上调了细胞治疗介导的分子修复的候选旁分泌效应物。