Shorttle Oliver, Saeidfirozeh Homa, Rimmer Paul Brandon, Laitl Vojtĕch, Kubelík Petr, Petera Lukáš, Ferus Martin
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK.
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK.
Sci Adv. 2024 Sep 13;10(37):eadm9921. doi: 10.1126/sciadv.adm9921. Epub 2024 Sep 11.
Intense bombardment of solar system planets in the immediate aftermath of protoplanetary disk dissipation has played a key role in their atmospheric evolution. During this epoch, energetic collisions will have removed substantial masses of gas from rocky planet atmospheres. Noble gases are powerful tracers of this early atmospheric history, xenon in particular, which on Mars and Earth shows significant depletions and isotopic fractionations relative to the lighter noble gasses. To evaluate the effect of impacts on the loss and fractionation of xenon, we measure its ionization and recombination efficiency by laser shock and apply these constraints to model impact-driven atmospheric escape on Mars. We demonstrate that impact bombardment within the first 200 to 300 million years of solar system history generates the observed Xe depletion and isotope fractionation of the modern martian atmosphere. This process may also explain the Xe depletion recorded in Earth's deep mantle and provides a latest date for the timing of giant planet instability.
原行星盘消散后紧接着对太阳系行星的强烈轰击,在其大气演化过程中起到了关键作用。在这个时期,高能碰撞会从岩石行星的大气中移除大量气体。惰性气体是这段早期大气历史的有力示踪剂,尤其是氙,在火星和地球上,相对于较轻的惰性气体,它表现出显著的损耗和同位素分馏。为了评估撞击对氙的损失和分馏的影响,我们通过激光冲击测量其电离和复合效率,并将这些约束条件应用于模拟火星上由撞击驱动的大气逃逸。我们证明,在太阳系历史的最初2亿到3亿年内的撞击轰击产生了现代火星大气中观测到的氙损耗和同位素分馏。这个过程也可能解释了记录在地球深部地幔中的氙损耗,并为巨行星不稳定的时间提供了最晚日期。