Suppr超能文献

基于端到端深度学习框架的合成 CT 图像预测脑出血患者血肿扩大。

Hematoma expansion prediction in intracerebral hemorrhage patients by using synthesized CT images in an end-to-end deep learning framework.

机构信息

Computer Vision and Robotics Group, University of Girona, Girona, Spain.

Computer Vision and Robotics Group, University of Girona, Girona, Spain.

出版信息

Comput Med Imaging Graph. 2024 Oct;117:102430. doi: 10.1016/j.compmedimag.2024.102430. Epub 2024 Sep 5.

Abstract

Spontaneous intracerebral hemorrhage (ICH) is a type of stroke less prevalent than ischemic stroke but associated with high mortality rates. Hematoma expansion (HE) is an increase in the bleeding that affects 30%-38% of hemorrhagic stroke patients. It is observed within 24 h of onset and associated with patient worsening. Clinically it is relevant to detect the patients that will develop HE from their initial computed tomography (CT) scans which could improve patient management and treatment decisions. However, this is a significant challenge due to the predictive nature of the task and its low prevalence, which hinders the availability of large datasets with the required longitudinal information. In this work, we present an end-to-end deep learning framework capable of predicting which cases will exhibit HE using only the initial basal image. We introduce a deep learning framework based on the 2D EfficientNet B0 model to predict the occurrence of HE using initial non-contrasted CT scans and their corresponding lesion annotation as priors. We used an in-house acquired dataset of 122 ICH patients, including 35 HE cases, containing longitudinal CT scans with manual lesion annotations in both basal and follow-up (obtained within 24 h after the basal scan). Experiments were conducted using a 5-fold cross-validation strategy. We addressed the limited data problem by incorporating synthetic images into the training process. To the best of our knowledge, our approach is novel in the field of HE prediction, being the first to use image synthesis to enhance results. We studied different scenarios such as training only with the original scans, using standard image augmentation techniques, and using synthetic image generation. The best performance was achieved by adding five generated versions of each image, along with standard data augmentation, during the training process. This significantly improved (p=0.0003) the performance obtained with our baseline model using directly the original CT scans from an Accuracy of 0.56 to 0.84, F1-Score of 0.53 to 0.82, Sensitivity of 0.51 to 0.77, and Specificity of 0.60 to 0.91, respectively. The proposed approach shows promising results in predicting HE, especially with the inclusion of synthetically generated images. The obtained results highlight the significance of this research direction, which has the potential to improve the clinical management of patients with hemorrhagic stroke. The code is available at: https://github.com/NIC-VICOROB/HE-prediction-SynthCT.

摘要

自发性脑出血 (ICH) 是一种比缺血性中风发病率低但死亡率高的中风类型。血肿扩大 (HE) 是指出血增加,影响 30%-38%的出血性中风患者。它发生在发病后 24 小时内,并与患者病情恶化有关。临床上,从初始计算机断层扫描 (CT) 扫描中检测出哪些患者会发生 HE 很重要,这可以改善患者的管理和治疗决策。然而,由于任务的预测性质和低发病率,这是一个重大挑战,这阻碍了具有所需纵向信息的大型数据集的可用性。在这项工作中,我们提出了一种端到端的深度学习框架,该框架能够仅使用初始基底图像预测哪些病例会出现 HE。我们引入了一种基于 2D EfficientNet B0 模型的深度学习框架,使用初始非对比 CT 扫描及其对应的病变标注作为先验来预测 HE 的发生。我们使用了一个内部采集的 122 名 ICH 患者数据集,包括 35 名 HE 病例,包含基底和随访 (在基底扫描后 24 小时内获得) 的纵向 CT 扫描和手动病变标注。实验采用 5 折交叉验证策略进行。我们通过将合成图像纳入训练过程来解决数据有限的问题。据我们所知,我们的方法在 HE 预测领域是新颖的,是第一个使用图像合成来增强结果的方法。我们研究了不同的情况,例如仅使用原始扫描进行训练、使用标准图像增强技术以及使用合成图像生成。通过在训练过程中添加每个图像的五个生成版本以及标准数据增强,获得了最佳性能。这显著提高了(p=0.0003)基线模型的性能,直接使用原始 CT 扫描从准确性 0.56 提高到 0.84,F1 得分从 0.53 提高到 0.82,敏感性从 0.51 提高到 0.77,特异性从 0.60 提高到 0.91。该方法在预测 HE 方面显示出了有前景的结果,尤其是包含合成生成的图像时。所获得的结果强调了这一研究方向的重要性,这有可能改善出血性中风患者的临床管理。代码可在:https://github.com/NIC-VICOROB/HE-prediction-SynthCT 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验