China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, Shandong 266021, China.
Ecotoxicol Environ Saf. 2024 Oct 1;284:116997. doi: 10.1016/j.ecoenv.2024.116997. Epub 2024 Sep 10.
Due to the complexity of environmental exposure factors and the low levels of exposure in the general population, identifying the key environmental factors associated with diabetes and understanding their potential mechanisms present significant challenges. This study aimed to identify key polycyclic aromatic hydrocarbons (PAHs) contributing to increased fasting blood glucose (FBG) concentrations and to explore their potential metabolic mechanisms. We recruited a highly PAH-exposed diesel engine exhaust testing population and healthy controls. Our findings found a positive association between FBG concentrations and PAH metabolites, identifying 1-OHNa, 2-OHPh, and 9-OHPh as major contributors to the rise in FBG concentrations induced by PAH mixtures. Specifically, each 10 % increase in 1-OHNa, 2-OHPh, and 9-OHPh concentrations led to increases in FBG concentrations of 0.201 %, 0.261 %, and 0.268 %, respectively. Targeted metabolomics analysis revealed significant alterations in metabolic pathways among those exposed to high levels of PAHs, including sirtuin signaling, asparagine metabolism, and proline metabolism pathway. Toxic function analysis highlighted differential metabolites involved in various dysglycemia-related conditions, such as cardiac arrhythmia and renal damage. Mediation analysis revealed that 2-aminooctanoic acid mediated the FBG elevation induced by 2-OHPh, while 2-hydroxyphenylacetic acid and hypoxanthine acted as partial suppressors. Notably, 2-aminooctanoic acid was identified as a crucial intermediary metabolic biomarker, mediating significant portions of the associations between the multiple different structures of OH-PAHs and elevated FBG concentrations, accounting for 16.73 %, 10.84 %, 10.00 %, and 11.90 % of these effects for 1-OHPyr, 2-OHFlu, the sum concentrations of 2- and 9-OHPh, and the sum concentrations of total OH-PAHs, respectively. Overall, our study explored the potential metabolic mechanisms underlying the elevated FBG induced by PAHs and identified 2-aminooctanoic acid as a pivotal metabolic biomarker, presenting a potential target for intervention.
由于环境暴露因素的复杂性和一般人群中暴露水平较低,确定与糖尿病相关的关键环境因素并了解其潜在机制具有很大的挑战性。本研究旨在确定导致空腹血糖(FBG)浓度升高的关键多环芳烃(PAHs),并探讨其潜在的代谢机制。我们招募了一个高度暴露于柴油发动机尾气的人群和健康对照组。我们的研究结果发现,FBG 浓度与 PAH 代谢物之间存在正相关,鉴定出 1-OHNa、2-OHPh 和 9-OHPh 是 PAH 混合物引起 FBG 浓度升高的主要贡献者。具体而言,1-OHNa、2-OHPh 和 9-OHPh 浓度每增加 10%,FBG 浓度分别升高 0.201%、0.261%和 0.268%。靶向代谢组学分析表明,暴露于高水平 PAHs 的人群中代谢途径发生显著改变,包括沉默信息调节因子信号通路、天冬酰胺代谢和脯氨酸代谢途径。毒性功能分析强调了与各种血糖异常相关条件相关的差异代谢物,如心律失常和肾损伤。中介分析表明,2-氨基辛酸介导了 2-OHPh 引起的 FBG 升高,而 2-羟基苯乙酸和次黄嘌呤则作为部分抑制剂。值得注意的是,2-氨基辛酸被确定为一个关键的中间代谢生物标志物,介导了多种不同结构的 OH-PAHs 与升高的 FBG 浓度之间的大部分关联,分别占 1-OHPyr、2-OHFlu、2-OHPh 和 9-OHPh 总和以及总 OH-PAHs 总和的 16.73%、10.84%、10.00%和 11.90%。总体而言,本研究探讨了 PAHs 引起的 FBG 升高的潜在代谢机制,并确定 2-氨基辛酸为关键代谢生物标志物,为干预提供了潜在靶点。