Silva Ingrid F, Pulignani Carolina, Odutola Jokotadeola, Galushchinskiy Alexey, Teixeira Ivo F, Isaacs Mark, Mesa Camilo A, Scoppola Ernesto, These Albert, Badamdorj Bolortuya, Ángel Muñoz-Márquez Miguel, Zizak Ivo, Palgrave Robert, Tarakina Nadezda V, Gimenez Sixto, Brabec Christoph, Bachmann Julien, Cortes Emiliano, Tkachenko Nikolai, Savateev Oleksandr, Jiménez-Calvo Pablo
Department of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
J Colloid Interface Sci. 2025 Jan 15;678(Pt B):518-533. doi: 10.1016/j.jcis.2024.09.028. Epub 2024 Sep 6.
Visible-light responsive, stable, and abundant absorbers are required for the rapid integration of green, clean, and renewable technologies in a circular economy. Photoactive solid-solid heterojunctions enable multiple charge pathways, inhibiting recombination through efficient charge transfer across the interface. This study spotlights the physico-chemical synergy between titanium dioxide (TiO) anatase and carbon nitride (CN) to form a hybrid material. The CN(10%)-TiO(90%) hybrid outperforms TiO and CN references and literature homologs in four photo and photoelectrocatalytic reactions. CN-TiO achieved a four-fold increase in benzylamine conversion, with photooxidation conversion rates of 51, 97, and 100 % at 625, 535, and 465 nm, respectively. The associated energy transfer mechanism was elucidated. In photoelectrochemistry, CN-TiO exhibited 23 % photoactivity of the full-spectrum measurement when using a 410 nm filter. Our findings demonstrate that CN-TiO displayed a band gap of 2.9 eV, evidencing TiO photosensitization attributed to enhanced charge transfer at the heterointerface boundaries via staggered heterojunction type II.
在循环经济中,绿色、清洁和可再生技术的快速整合需要可见光响应、稳定且丰富的吸收剂。光活性固-固异质结允许多种电荷传导途径,通过界面间高效的电荷转移抑制复合。本研究聚焦于二氧化钛(TiO)锐钛矿型与氮化碳(CN)之间的物理化学协同作用以形成一种混合材料。在四个光催化和光电催化反应中,CN(10%)-TiO(90%)混合物的性能优于TiO和CN参比物以及文献中的同类材料。CN-TiO实现了苄胺转化率提高四倍,在625、535和465 nm处的光氧化转化率分别为51%、97%和100%。阐明了相关的能量转移机制。在光电化学中,当使用410 nm滤光片时,CN-TiO在全光谱测量中表现出23%的光活性。我们的研究结果表明,CN-TiO的带隙为2.9 eV,证明了TiO的光敏化作用,这归因于通过交错型II类异质结在异质界面边界处增强的电荷转移。