Suppr超能文献

采用高斯弛豫时间分布(EIS-GRTD)的电阻抗谱法检测浸润性导管癌。

Detection of invasive ductal carcinoma by electrical impedance spectroscopy implementing gaussian relaxation-time distribution (EIS-GRTD).

机构信息

Department of Mechanical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, 263-8522, Japan.

Department of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada, Sekip Unit III, Bulaksumur, Yogyakarta, 55281, Indonesia.

出版信息

Biomed Phys Eng Express. 2024 Sep 19;10(6). doi: 10.1088/2057-1976/ad795f.

Abstract

Breast cancer detection and differentiation of breast tissues are critical for accurate diagnosis and treatment planning. This study addresses the challenge of distinguishing between invasive ductal carcinoma (IDC), normal glandular breast tissues (nGBT), and adipose tissue using electrical impedance spectroscopy combined with Gaussian relaxation-time distribution (EIS-GRTD). The primary objective is to investigate the relaxation-time characteristics of these tissues and their potential to differentiate between normal and abnormal breast tissues. We applied a single-point EIS-GRTD measurement to ten mastectomy specimens across a frequency range= 4 Hz to 5 MHz. The method calculates the differential ratio of the relaxation-time distribution functionΔγbetween IDC and nGBT, which is denoted byΔγIDC-nGBT,andΔγbetween IDC and adipose tissues, which is denoted byΔγIDC-adipose.As a result, the differential ratio ofΔγbetween IDC and nGBTΔγIDC-nGBTis 0.36, and between IDC and adiposeΔγIDC-adiposeis 0.27, which included in theα-dispersion atτpeak1=0.033±0.001s.In all specimens, the relaxation-time distribution functionγof IDCγIDCis higher, and there is no intersection withγof nGBTγnGBTand adiposeγadipose.The difference inγsuggests potential variations in relaxation properties at the molecular or structural level within each breast tissue that contribute to the overall relaxation response. The average mean percentage errorδfor IDC, nGBT, and adipose tissues are 5.90%, 6.33%, and 8.07%, respectively, demonstrating the model's accuracy and reliability. This study provides novel insights into the use of relaxation-time characteristic for differentiating breast tissue types, offering potential advancements in diagnosis methods. Future research will focus on correlating EIS-GRTD finding with pathological results from the same test sites to further validate the method's efficacy.

摘要

乳腺癌的检测和乳腺组织的区分对于准确的诊断和治疗计划至关重要。本研究采用电阻抗谱结合高斯弛豫时间分布(EIS-GRTD)的方法,解决了区分浸润性导管癌(IDC)、正常乳腺组织(nGBT)和脂肪组织的挑战。主要目的是研究这些组织的弛豫时间特征及其区分正常和异常乳腺组织的潜力。我们对 10 个乳房切除术标本进行了单点 EIS-GRTD 测量,频率范围为 4 Hz 至 5 MHz。该方法计算了 IDC 和 nGBT 之间弛豫时间分布函数γ的差分比ΔγIDC-nGBT,以及 IDC 和脂肪组织之间的差分比ΔγIDC-adipose。结果表明,IDC 和 nGBT 之间的差分比ΔγIDC-nGBT为 0.36,IDC 和脂肪之间的差分比ΔγIDC-adipose为 0.27,包括在τpeak1=0.033±0.001s 处的α-弥散中。在所有标本中,IDC 的弛豫时间分布函数γIDC较高,与 nGBT 的γnGBT和脂肪的γadipose没有交叉。γ的差异表明,每个乳腺组织内的分子或结构水平的弛豫性质可能存在差异,这有助于整体弛豫反应。IDC、nGBT 和脂肪组织的平均平均误差百分比δ分别为 5.90%、6.33%和 8.07%,表明该模型具有较高的准确性和可靠性。本研究为利用弛豫时间特征区分乳腺组织类型提供了新的见解,为诊断方法的发展提供了潜力。未来的研究将集中于将 EIS-GRTD 结果与同一测试点的病理结果相关联,以进一步验证该方法的疗效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验