Suppr超能文献

基于多项口语任务的中国人轻度认知障碍识别。

Identification of Mild Cognitive Impairment Among Chinese Based on Multiple Spoken Tasks.

机构信息

CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen, China.

出版信息

J Alzheimers Dis. 2021;82(1):185-204. doi: 10.3233/JAD-201387.

Abstract

BACKGROUND

Previous studies explored the use of noninvasive biomarkers of speech and language for the detection of mild cognitive impairment (MCI). Yet, most of them employed single task which might not have adequately captured all aspects of their cognitive functions.

OBJECTIVE

The present study aimed to achieve the state-of-the-art accuracy in detecting individuals with MCI using multiple spoken tasks and uncover task-specific contributions with a tentative interpretation of features.

METHODS

Fifty patients clinically diagnosed with MCI and 60 healthy controls completed three spoken tasks (picture description, semantic fluency, and sentence repetition), from which multidimensional features were extracted to train machine learning classifiers. With a late-fusion configuration, predictions from multiple tasks were combined and correlated with the participants' cognitive ability assessed using the Montreal Cognitive Assessment (MoCA). Statistical analyses on pre-defined features were carried out to explore their association with the diagnosis.

RESULTS

The late-fusion configuration could effectively boost the final classification result (SVM: F1 = 0.95; RF: F1 = 0.96; LR: F1 = 0.93), outperforming each individual task classifier. Besides, the probability estimates of MCI were strongly correlated with the MoCA scores (SVM: -0.74; RF: -0.71; LR: -0.72).

CONCLUSION

Each single task tapped more dominantly to distinct cognitive processes and have specific contributions to the prediction of MCI. Specifically, picture description task characterized communications at the discourse level, while semantic fluency task was more specific to the controlled lexical retrieval processes. With greater demands on working memory load, sentence repetition task uncovered memory deficits through modified speech patterns in the reproduced sentences.

摘要

背景

先前的研究探讨了使用非侵入性的言语和语言生物标志物来检测轻度认知障碍(MCI)。然而,大多数研究都采用了单一任务,这可能无法充分捕捉他们认知功能的所有方面。

目的

本研究旨在使用多种口语任务实现检测 MCI 患者的最新准确性,并通过对特征的初步解释来揭示特定任务的贡献。

方法

50 名临床诊断为 MCI 的患者和 60 名健康对照者完成了三项口语任务(图片描述、语义流畅性和句子重复),从中提取多维特征来训练机器学习分类器。采用后期融合配置,将来自多个任务的预测进行组合,并与使用蒙特利尔认知评估(MoCA)评估的参与者认知能力相关联。对预定义特征进行统计分析,以探讨它们与诊断的关联。

结果

后期融合配置可以有效地提高最终分类结果(SVM:F1=0.95;RF:F1=0.96;LR:F1=0.93),优于每个单独的任务分类器。此外,MCI 的概率估计与 MoCA 得分高度相关(SVM:-0.74;RF:-0.71;LR:-0.72)。

结论

每个单独的任务更多地侧重于不同的认知过程,并对 MCI 的预测有特定的贡献。具体来说,图片描述任务主要涉及语篇层面的交流,而语义流畅性任务则更具体地针对受控制的词汇检索过程。句子重复任务对工作记忆负荷的要求更高,通过修改重复句子中的语音模式揭示了记忆缺陷。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验