JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO, USA.
Department of Physics, Harvard University, Cambridge, MA, USA.
Nature. 2024 Sep;633(8029):332-337. doi: 10.1038/s41586-024-07883-2. Epub 2024 Sep 11.
Polar molecules confined in an optical lattice are a versatile platform to explore spin-motion dynamics based on strong, long-range dipolar interactions. The precise tunability of Ising and spin-exchange interactions with both microwave and d.c. electric fields makes the molecular system particularly suitable for engineering complex many-body dynamics. Here we used Floquet engineering to realize new quantum many-body systems of polar molecules. Using a spin encoded in the two lowest rotational states of ultracold KRb molecules, we mutually validated XXZ spin models tuned by a Floquet microwave pulse sequence against those tuned by a d.c. electric field through observations of Ramsey contrast dynamics. This validation sets the stage for the realization of Hamiltonians inaccessible with static fields. In particular, we observed two-axis twisting mean-field dynamics, generated by a Floquet-engineered XYZ model using itinerant molecules in two-dimensional layers. In the future, Floquet-engineered Hamiltonians could generate entangled states for molecule-based precision measurement or could take advantage of the rich molecular structure for quantum simulation of multi-level systems.
被限制在光学晶格中的极性分子是一个强大的平台,可以探索基于强长程偶极相互作用的自旋运动动力学。通过微波和直流电场对伊辛和自旋交换相互作用的精确可调性,使得分子系统特别适合于工程复杂的多体动力学。在这里,我们使用弗洛奎特工程来实现极性分子的新量子多体系统。使用超冷 KRb 分子的两个最低旋转态中的自旋编码,我们通过观察拉姆齐对比动力学,相互验证了由弗洛奎特微波脉冲序列调谐的 XXZ 自旋模型与由直流电场调谐的自旋模型。这一验证为实现用静态场无法实现的哈密顿量奠定了基础。特别是,我们观察到了由二维层中扩散分子的弗洛奎特工程 XYZ 模型产生的双轴扭曲平均场动力学。在未来,弗洛奎特工程的哈密顿量可以为基于分子的精密测量产生纠缠态,或者可以利用丰富的分子结构来模拟多层次系统的量子。