Suppr超能文献

基于 Logistic 回归分析和机器学习的脑卒中后步态独立性预测:一项回顾性研究。

Logistic regression analysis and machine learning for predicting post-stroke gait independence: a retrospective study.

机构信息

Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan.

Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.

出版信息

Sci Rep. 2024 Sep 11;14(1):21273. doi: 10.1038/s41598-024-72206-4.

Abstract

This study investigated whether machine learning (ML) has better predictive accuracy than logistic regression analysis (LR) for gait independence at discharge in subacute stroke patients (n = 843) who could not walk independently at admission. We developed prediction models using LR and five ML algorithms-specifically, the decision tree (DT), support vector machine, artificial neural network, ensemble learning, and k-nearest neighbor methods. Functional Independence Measure sub-items were used to evaluate the ability to walk independently. Model predictive accuracies were evaluated using areas under receiver operating characteristic curves (AUCs) as well as accuracy, precision, recall, F1 score, and specificity. The AUC for DT (0.812) was significantly lower than those for the other algorithms (p < 0.01); however, the AUC for LR (0.895) did not differ significantly from those for the other models (0.893-0.903). Other performance metrics showed no substantial differences between LR and ML algorithms. In conclusion, the DT algorithm had significantly low predictive accuracy, and LR showed no significant difference in predictive accuracy compared with the other ML algorithms. As its predictive accuracy is similar to that of ML, LR can continue to be used for predicting the prognosis of gait independence, with additional advantages of being easily understandable and manually computable.

摘要

本研究旨在探讨在不能独立行走入院的亚急性脑卒中患者(n=843)中,机器学习(ML)是否比逻辑回归分析(LR)在出院时步态独立性方面具有更好的预测准确性。我们使用 LR 和五种 ML 算法(决策树(DT)、支持向量机、人工神经网络、集成学习和 K 最近邻方法)开发了预测模型。使用功能独立性测量的子项来评估独立行走的能力。使用接收者操作特征曲线下的面积(AUC)以及准确性、精度、召回率、F1 得分和特异性来评估模型的预测准确性。DT(0.812)的 AUC 明显低于其他算法(p<0.01);然而,LR(0.895)的 AUC 与其他模型(0.893-0.903)没有显著差异。其他性能指标在 LR 和 ML 算法之间没有显示出显著差异。总之,DT 算法的预测准确性明显较低,而 LR 与其他 ML 算法相比,在预测准确性方面没有显著差异。由于其预测准确性与 ML 相似,LR 可以继续用于预测步态独立性的预后,并且具有易于理解和手动计算的额外优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e62b/11390880/50eef579e71b/41598_2024_72206_Fig1_HTML.jpg

相似文献

2
Prediction of poststroke independent walking using machine learning: a retrospective study.
BMC Neurol. 2024 Sep 10;24(1):332. doi: 10.1186/s12883-024-03849-z.
4
Comparison of Supervised Machine Learning Algorithms for Classifying of Home Discharge Possibility in Convalescent Stroke Patients: A Secondary Analysis.
J Stroke Cerebrovasc Dis. 2021 Oct;30(10):106011. doi: 10.1016/j.jstrokecerebrovasdis.2021.106011. Epub 2021 Jul 26.
7
Prediction and feature selection of low birth weight using machine learning algorithms.
J Health Popul Nutr. 2024 Oct 12;43(1):157. doi: 10.1186/s41043-024-00647-8.
8
[Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024 Apr;36(4):345-352. doi: 10.3760/cma.j.cn121430-20230930-00832.
9
Predicting post-stroke pneumonia using deep neural network approaches.
Int J Med Inform. 2019 Dec;132:103986. doi: 10.1016/j.ijmedinf.2019.103986. Epub 2019 Oct 1.
10
Machine Learning-Based Clinical Prediction Models for Acute Ischemic Stroke Based on Serum Xanthine Oxidase Levels.
World Neurosurg. 2024 Apr;184:e695-e707. doi: 10.1016/j.wneu.2024.02.014. Epub 2024 Feb 8.

引用本文的文献

本文引用的文献

1
Motor rehabilitation after stroke: European Stroke Organisation (ESO) consensus-based definition and guiding framework.
Eur Stroke J. 2023 Dec;8(4):880-894. doi: 10.1177/23969873231191304. Epub 2023 Aug 7.
3
Improvement of predictive accuracies of functional outcomes after subacute stroke inpatient rehabilitation by machine learning models.
PLoS One. 2023 May 26;18(5):e0286269. doi: 10.1371/journal.pone.0286269. eCollection 2023.
4
Prediction of gait independence using the Trunk Impairment Scale in patients with acute stroke.
Ther Adv Neurol Disord. 2022 Dec 6;15:17562864221140180. doi: 10.1177/17562864221140180. eCollection 2022.
5
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.
Nat Mach Intell. 2019 May;1(5):206-215. doi: 10.1038/s42256-019-0048-x. Epub 2019 May 13.
6
Developing a Clinical Prediction Rule for Gait Independence at Discharge in Patients with Stroke: A Decision-Tree Algorithm Analysis.
J Stroke Cerebrovasc Dis. 2022 Jun;31(6):106441. doi: 10.1016/j.jstrokecerebrovasdis.2022.106441. Epub 2022 Mar 16.
7
Machine Learning in Action: Stroke Diagnosis and Outcome Prediction.
Front Neurol. 2021 Dec 6;12:734345. doi: 10.3389/fneur.2021.734345. eCollection 2021.
8
Prediction of Motor Function in Stroke Patients Using Machine Learning Algorithm: Development of Practical Models.
J Stroke Cerebrovasc Dis. 2021 Aug;30(8):105856. doi: 10.1016/j.jstrokecerebrovasdis.2021.105856. Epub 2021 May 19.
9
Externally validated model predicting gait independence after stroke showed fair performance and improved after updating.
J Clin Epidemiol. 2021 Sep;137:73-82. doi: 10.1016/j.jclinepi.2021.03.022. Epub 2021 Mar 31.
10
Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning.
Stroke. 2020 Dec;51(12):3541-3551. doi: 10.1161/STROKEAHA.120.030287. Epub 2020 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验