Wan Xing, Shahrear Sazzad, Chew Shea Wen, Vilaplana Francisco, Mäkelä Miia R
Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Biocenter 1, Viikinkaari 9, 00790, Helsinki, Finland.
Division of Glycoscience, Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, Roslagstullbacken 21, 11421, Stockholm, Sweden.
Biotechnol Biofuels Bioprod. 2024 Sep 11;17(1):120. doi: 10.1186/s13068-024-02566-6.
Laccases can oxidize a broad spectrum of substrates, offering promising applications in various sectors, such as bioremediation, biomass fractionation in future biorefineries, and synthesis of biochemicals and biopolymers. However, laccase discovery and optimization with a desirable pH optimum remains a challenge due to the labor-intensive and time-consuming nature of the traditional laboratory methods.
This study presents a machine learning (ML)-integrated approach for predicting pH optima of basidiomycete fungal laccases, utilizing a small, curated dataset against a vast metagenomic data. Comparative computational analyses unveiled the structural and pH-dependent solubility differences between acidic and neutral-alkaline laccases, helping us understand the molecular bases of enzyme pH optimum. The pH profiling of the two ML-predicted alkaline laccase candidates from the basidiomycete fungus Lepista nuda further validated our computational approach, showing the accuracy of this comprehensive method.
This study uncovers the efficacy of ML in the prediction of enzyme pH optimum from minimal datasets, marking a significant step towards harnessing computational tools for systematic screening of enzymes for biotechnology applications.
漆酶能够氧化多种底物,在生物修复、未来生物炼制中的生物质分级以及生物化学品和生物聚合物的合成等各个领域都有广阔的应用前景。然而,由于传统实验室方法 labor-intensive 且耗时,发现漆酶并将其最适pH值优化到理想范围仍然是一项挑战。
本研究提出了一种机器学习(ML)集成方法,利用一个经过整理的小数据集和大量宏基因组数据来预测担子菌真菌漆酶的最适pH值。比较计算分析揭示了酸性和中性碱性漆酶之间的结构和pH依赖性溶解度差异,有助于我们理解酶最适pH值的分子基础。对担子菌裸盖菇中两种ML预测的碱性漆酶候选物的pH分析进一步验证了我们的计算方法,表明了这种综合方法的准确性。
本研究揭示了ML在从小型数据集中预测酶最适pH值方面的有效性,标志着在利用计算工具系统筛选用于生物技术应用的酶方面迈出了重要一步。