Suppr超能文献

基于红外光谱的可解释机器学习框架预测和理解光催化CO还原反应

Predicting and understanding photocatalytic CO reduction reaction with IR spectroscopy-based interpretable machine learning framework.

作者信息

Wang Yanxia, Sun Yanjuan, Liu Xinyan, Dong Fan

机构信息

School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 2006 Xiyuan Road, Chengdu 611731, China.

出版信息

PNAS Nexus. 2024 Aug 27;3(9):pgae339. doi: 10.1093/pnasnexus/pgae339. eCollection 2024 Sep.

Abstract

The highly selective conversion of carbon dioxide into value-added products is extremely valuable. However, even with the aid of in situ characterization techniques, it remains challenging to directly correlate extensive spectral data carrying microscopic information with macroscopic performance. Herein, we adopted advanced machine learning (ML) approaches to establish an accurate and interpretable relationship between vibrational spectral signals and catalytic performances to uncover hidden physical insights. Focusing on photocatalytic CO reduction, our model is shown to effectively and accurately predict the CO production activity and selectivity based solely on the infrared (IR) spectral signals, the generalizability of which is additionally demonstrated with a new BiOI photocatalytic system. More importantly, further model analysis has revealed a novel strategy to steer CO selectivity, the physical sanity of which is verified by a detailed reaction mechanism analysis. This work demonstrates the tremendous potential of machine-learned spectroscopy to efficiently identify reaction control factors, which can further lay the foundation for targeted optimization and reverse design.

摘要

将二氧化碳高效选择性地转化为高附加值产品具有极高的价值。然而,即便借助原位表征技术,要将承载微观信息的大量光谱数据与宏观性能直接关联起来仍具有挑战性。在此,我们采用先进的机器学习(ML)方法,在振动光谱信号与催化性能之间建立准确且可解释的关系,以揭示潜在的物理见解。聚焦于光催化CO还原,我们的模型被证明仅基于红外(IR)光谱信号就能有效且准确地预测CO生成活性和选择性,并且通过一个新型的BiOI光催化系统进一步证明了其通用性。更重要的是,进一步的模型分析揭示了一种控制CO选择性的新策略,通过详细的反应机理分析验证了其物理合理性。这项工作展示了机器学习光谱在高效识别反应控制因素方面的巨大潜力,可为定向优化和逆向设计进一步奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecf7/11389833/80e1b13b85b4/pgae339s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验