IEEE Trans Pattern Anal Mach Intell. 2022 Jul;44(7):3634-3646. doi: 10.1109/TPAMI.2021.3054824. Epub 2022 Jun 3.
Neural architecture search (NAS) has attracted a lot of attention and has been illustrated to bring tangible benefits in a large number of applications in the past few years. Architecture topology and architecture size have been regarded as two of the most important aspects for the performance of deep learning models and the community has spawned lots of searching algorithms for both of those aspects of the neural architectures. However, the performance gain from these searching algorithms is achieved under different search spaces and training setups. This makes the overall performance of the algorithms incomparable and the improvement from a sub-module of the searching model unclear. In this paper, we propose NATS-Bench, a unified benchmark on searching for both topology and size, for (almost) any up-to-date NAS algorithm. NATS-Bench includes the search space of 15,625 neural cell candidates for architecture topology and 32,768 for architecture size on three datasets. We analyze the validity of our benchmark in terms of various criteria and performance comparison of all candidates in the search space. We also show the versatility of NATS-Bench by benchmarking 13 recent state-of-the-art NAS algorithms on it. All logs and diagnostic information trained using the same setup for each candidate are provided. This facilitates a much larger community of researchers to focus on developing better NAS algorithms in a more comparable and computationally effective environment. All codes are publicly available at: https://xuanyidong.com/assets/projects/NATS-Bench.
神经结构搜索 (NAS) 在过去几年中引起了广泛关注,并在许多应用中证明了其带来的实质性好处。架构拓扑和架构大小被认为是深度学习模型性能的两个最重要的方面,社区已经为这两个方面的神经架构生成了许多搜索算法。然而,这些搜索算法的性能提升是在不同的搜索空间和训练设置下实现的。这使得算法的整体性能无法比较,也不清楚搜索模型的子模块的改进情况。在本文中,我们提出了 NATS-Bench,这是一个针对(几乎)任何最新的 NAS 算法的拓扑和大小搜索的统一基准。NATS-Bench 包括三个数据集上的 15625 个神经单元候选拓扑结构搜索空间和 32768 个架构大小搜索空间。我们根据各种标准分析了我们基准的有效性,并对搜索空间中的所有候选者进行了性能比较。我们还通过在 NATS-Bench 上对 13 种最新的最先进的 NAS 算法进行基准测试,展示了 NATS-Bench 的通用性。为每个候选者提供了使用相同设置训练的所有日志和诊断信息。这为更多的研究人员提供了一个更具可比性和计算效率的环境,以专注于开发更好的 NAS 算法。所有代码都可以在以下网址获得:https://xuanyidong.com/assets/projects/NATS-Bench。