Suppr超能文献

对肺腺癌中细胞通讯相互作用的剖析确定了一个具有免疫治疗疗效评估的预后模型和一个潜在的治疗候选基因ITGB1。

Dissection of the cell communication interactions in lung adenocarcinoma identified a prognostic model with immunotherapy efficacy assessment and a potential therapeutic candidate gene ITGB1.

作者信息

Jin Xing, Hu Zhengyang, Yin Jiacheng, Shan Guangyao, Zhao Mengnan, Liao Zhenyu, Liang Jiaqi, Bi Guoshu, Cheng Ye, Xi Junjie, Chen Zhencong, Lin Miao

机构信息

Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.

Shanghai Cancer Center, Fudan University, Shanghai, China.

出版信息

Heliyon. 2024 Aug 22;10(17):e36599. doi: 10.1016/j.heliyon.2024.e36599. eCollection 2024 Sep 15.

Abstract

BACKGROUND

The tumor microenvironment (TME) in lung adenocarcinoma (LUAD) influences tumor progression and immunosuppressive phenotypes through cell communication. We aimed to decipher cellular communication and molecular patterns in LUAD.

METHODS

We analyzed scRNA-seq data from LUAD patients in multiple cohorts, revealing complex cell communication networks within the TME. Using cell chat analysis and COSmap technology, we inferred LUAD's spatial organization. Employing the NMF algorithm and survival screening, we identified a cell communication interactions (CCIs) model and validated it across various datasets.

RESULTS

We uncovered intricate cell communication interactions within the TME, identifying three LUAD patient subtypes with distinct prognosis, clinical characteristics, mutation status, expression patterns, and immune infiltration. Our CCI model exhibited robust performance in prognosis and immunotherapy response prediction. Several potential therapeutic targets and agents for high CCI score patients with immunosuppressive profiles were identified. Machine learning algorithms pinpointed the novel candidate gene ITGB1 and validated its role in LUAD tumor phenotype in vitro.

CONCLUSION

Our study elucidates molecular patterns and cell communication interactions in LUAD as effective biomarkers and predictors of immunotherapy response. Targeting cell communication interactions offers novel avenues for LUAD immunotherapy and prognostic evaluations, with ITGB1 emerging as a promising therapeutic target.

摘要

背景

肺腺癌(LUAD)中的肿瘤微环境(TME)通过细胞通讯影响肿瘤进展和免疫抑制表型。我们旨在破译LUAD中的细胞通讯和分子模式。

方法

我们分析了多个队列中LUAD患者的单细胞RNA测序(scRNA-seq)数据,揭示了TME内复杂的细胞通讯网络。使用细胞聊天分析和COSmap技术,我们推断了LUAD的空间组织。采用非负矩阵分解(NMF)算法和生存筛选,我们确定了一个细胞通讯相互作用(CCIs)模型,并在各种数据集中进行了验证。

结果

我们发现了TME内复杂的细胞通讯相互作用,确定了三种具有不同预后、临床特征、突变状态、表达模式和免疫浸润的LUAD患者亚型。我们的CCIs模型在预后和免疫治疗反应预测方面表现出强大的性能。确定了几种针对具有免疫抑制特征的高CCIs评分患者的潜在治疗靶点和药物。机器学习算法确定了新的候选基因整合素β1(ITGB1),并在体外验证了其在LUAD肿瘤表型中的作用。

结论

我们的研究阐明了LUAD中的分子模式和细胞通讯相互作用,作为免疫治疗反应的有效生物标志物和预测指标。靶向细胞通讯相互作用为LUAD免疫治疗和预后评估提供了新途径,ITGB1成为一个有前景的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02dc/11388764/edf29946b6be/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验