Suppr超能文献

基于人工神经网络的道路交通噪声预测模型。

Road traffic noise prediction model based on artificial neural networks.

作者信息

Acosta Óscar, Montenegro Carlos, Crespo Rubén González

机构信息

Universidad Distrital Francisco José de Caldas, Carrera 7 40b 53, Bogotá, 111711, Cundinamarca, Colombia.

Universidad Internacional de La Rioja, Av. de la Paz 137, Logroño, 26006, La Rioja, Spain.

出版信息

Heliyon. 2024 Aug 22;10(17):e36484. doi: 10.1016/j.heliyon.2024.e36484. eCollection 2024 Sep 15.

Abstract

This paper proposes a model based on machine learning for the prediction of road traffic noise for the city of Bogota-Colombia. The input variables of the model were: vehicle capacity, speed, type of flow and number of lanes. The input data were obtained through measurement campaigns in which audio and video recordings were made. The audio recordings, made with a measuring microphone calibrated at a height of 4 meters, made it possible to calculate the noise levels through software processing. On the other hand, by processing the video data, the capacity, and speed of the vehicle were obtained. This process was carried out by means of a classifier trained with images of vehicles taken in the field and free databases. In order to determine the machine learning algorithm to be used, five models were compared, which were configured with their respective hyperparameters obtained through mesh search. The results showed that the Multilayer Perceptron (MLP) regression had the best fit with an MAE of 0.86 dBA for the test data. Finally, the proposed MLP regressor was compared with some classical statistical models used for road traffic noise prediction. The main conclusion is that the MLP regressor obtained the best error and fit indicators with respect to traditional statistical models.

摘要

本文提出了一种基于机器学习的模型,用于预测哥伦比亚波哥大市的道路交通噪声。该模型的输入变量为:车辆容量、速度、车流类型和车道数量。输入数据通过测量活动获得,在这些活动中进行了音频和视频录制。使用在4米高度校准的测量麦克风进行的音频录制,通过软件处理能够计算出噪声水平。另一方面,通过处理视频数据,可以获得车辆的容量和速度。这个过程是通过一个用现场拍摄的车辆图像和免费数据库训练的分类器来完成的。为了确定要使用的机器学习算法,比较了五个模型,这些模型用通过网格搜索获得的各自超参数进行了配置。结果表明,多层感知器(MLP)回归对测试数据的拟合效果最佳,平均绝对误差(MAE)为0.86分贝。最后,将所提出的MLP回归器与一些用于道路交通噪声预测的经典统计模型进行了比较。主要结论是,相对于传统统计模型,MLP回归器获得了最佳的误差和拟合指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3962/11387240/5c59b5654634/gr001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验