Suppr超能文献

一种用于急性冠状动脉综合征患者风险分层的可解释机器学习方法。

An interpretable machine learning method for risk stratification of patients with acute coronary syndrome.

作者信息

Zhu Xing-Yu, Zhang Kai-Jie, Li Xiao, Su Fei-Fei, Tian Jian-Wei

机构信息

Graduate School of Hebei North University, Zhangjiakou, 075031, Hebei Province, China.

Department of Cardiovascular Medicine, Air Force Medical Center, Chinese People's Liberation Army, Beijing, 100142, Beijing, China.

出版信息

Heliyon. 2024 Aug 23;10(17):e36815. doi: 10.1016/j.heliyon.2024.e36815. eCollection 2024 Sep 15.

Abstract

BACKGROUNDS

Risk stratification for major adverse cardiovascular events (MACE) within one year in patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI) remains a challenge. Although several predictive models based on machine learning have emerged, they are difficult to understand. This study aimed to develop a machine learning prediction model that is easy to understand and trustworthy by lay people to assess the risk of MACE in ACS patients undergoing PCI within one year of the procedure.

METHODS

This retrospective cohort study used medical data from 1105 patients to construct a machine-learning model. To ensure thoroughness and multidimensionality of model parsing, Shapley Additive explanations (SHAP) analysis and Local interpretable model-agnostic explanations (LIME) interpretation techniques were used to systematically and deeply interpret the constructed models from a global to a detailed level.

RESULTS

The study assessed 12 machine learning methods' prediction models and found that the Random Forest model was the most effective in predicting the risk of MACE in ACS patients after undergoing PCI. The model achieved an AUC value of 0.807 in the validation set, with an accuracy of 0.82, and a stable F1 score of 0.51. SHAP analysis ranked eight key feature variables, such as LVEF, in global importance. The weights of each feature range in the prediction model were revealed using LIME analysis.

CONCLUSION

The machine learning prediction model we developed is capable of accurately predicting the likelihood of patients with ACS experiencing a MACE within one year of surgery.

摘要

背景

对于接受经皮冠状动脉介入治疗(PCI)的急性冠状动脉综合征(ACS)患者,在一年内发生主要不良心血管事件(MACE)的风险分层仍然是一项挑战。尽管已经出现了几种基于机器学习的预测模型,但它们难以理解。本研究旨在开发一种易于理解且外行人也能信赖的机器学习预测模型,以评估接受PCI的ACS患者在术后一年内发生MACE的风险。

方法

这项回顾性队列研究使用了1105例患者的医疗数据来构建机器学习模型。为确保模型解析的全面性和多维性,采用夏普利值加法解释(SHAP)分析和局部可解释模型无关解释(LIME)解释技术,从全局到详细层面系统深入地解释构建的模型。

结果

该研究评估了12种机器学习方法的预测模型,发现随机森林模型在预测接受PCI的ACS患者发生MACE的风险方面最有效。该模型在验证集中的AUC值为0.807,准确率为0.82,F1分数稳定在0.51。SHAP分析对八个关键特征变量(如左心室射血分数)的全局重要性进行了排序。使用LIME分析揭示了预测模型中每个特征范围的权重。

结论

我们开发的机器学习预测模型能够准确预测ACS患者在手术后一年内发生MACE的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ccd/11387528/dff1c57fc798/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验