Suppr超能文献

慢性阻塞性肺疾病死亡风险预测模型的开发与验证:一项使用概率图形模型的横断面研究

Development and validation of a mortality risk prediction model for chronic obstructive pulmonary disease: a cross-sectional study using probabilistic graphical modelling.

作者信息

Lovelace Tyler C, Ryu Min Hyung, Jia Minxue, Castaldi Peter, Sciurba Frank C, Hersh Craig P, Benos Panayiotis V

机构信息

Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA.

出版信息

EClinicalMedicine. 2024 Aug 22;75:102786. doi: 10.1016/j.eclinm.2024.102786. eCollection 2024 Sep.

Abstract

BACKGROUND

Chronic Obstructive Pulmonary Disease (COPD) is a leading cause of mortality. Predicting mortality risk in patients with COPD can be important for disease management strategies. Although all-cause mortality predictors have been developed previously, limited research exists on factors directly affecting COPD-specific mortality.

METHODS

In a retrospective study, we used probabilistic graphs to analyse clinical cross-sectional data (COPDGene cohort), including demographics, spirometry, quantitative chest imaging, and symptom features, as well as gene expression data. COPDGene recruited current and former smokers, aged 45-80 years with >10 pack-years smoking history, from across the USA (Phase 1, 11/2007-4/2011) and invited them for a follow-up visit (Phase 2, 7/2013-7/2017). ECLIPSE cohort recruited current and former smokers (COPD patients and controls from USA and Europe), aged 45-80 with smoking history >10 pack-years (12/2005-11/2007). We applied graphical models on multi-modal data COPDGene Phase 1 participants to identify factors directly affecting all-cause and COPD-specific mortality (primary outcomes); and on Phase 2 follow-up cohort to identify additional molecular and social factors affecting mortality. We used penalized Cox regression with features selected by the causal graph to build VAPORED, a mortality risk prediction model. VAPORED was compared to existing scores (BODE: BMI, airflow obstruction, dyspnoea, exercise capacity; ADO: age, dyspnoea, airflow obstruction) on the ability to rank individuals by mortality risk, using four evaluation metrics (concordance, concordance probability estimate (CPE), cumulative/dynamic (C/D) area under the receiver operating characteristic curve (AUC), and integrated C/D AUC). The results were validated in ECLIPSE.

FINDINGS

Graphical models, applied on the COPDGene Phase 1 samples (n = 8610), identified 11 and 7 variables directly linked to all-cause and COPD-specific mortality, respectively. Although many appear in both models, non-lung comorbidities appear only in the all-cause model, while forced vital capacity (FVC %predicted) appears in COPD-specific mortality model only. Additionally, the graph model of Phase 2 data (n = 3182) identified internet access, CD4 T cells and platelets to be linked to lower mortality risk. Furthermore, using the 7 variables linked to COPD-specific mortality (forced expiratory volume in 1 s/forced vital capacity (FEV/FVC) ration, FVC %predicted, age, history of pneumonia, oxygen saturation, 6-min walk distance, dyspnoea) we developed mortality risk score, which we validated on the ECLIPSE cohort (3-yr all-cause mortality data, n = 2312). VAPORED performed significantly better than ADO, BODE, and updated BODE indices in predicting all-cause mortality in ECLIPSE in terms of concordance (VAPORED [0.719] vs ADO [0.693; FDR p-value 0.014], BODE [0.695; FDR p-value 0.020], and updated BODE [0.694; FDR p-value 0.021]); CPE (VAPORED [0.714] vs ADO [0.673; FDR p-value <0.0001], BODE [0.662; FDR p-value <0.0001], and updated BODE [0.646; FDR p-value <0.0001]); 3-year C/D AUC (VAPORED [0.728] vs ADO [0.702; FDR p-value 0.017], BODE [0.704; FDR p-value 0.021], and updated BODE [0.703; FDR p-value 0.024]); integrated C/D AUC (VAPORED [0.723] vs ADO [0.698; FDR p-value 0.047], BODE [0.695; FDR p-value 0.024], and updated BODE [0.690; FDR p-value 0.021]). Finally, we developed a web tool to help clinicians calculate VAPORED mortality risk and compare it to ADO and BODE predictions.

INTERPRETATION

Our work is an important step towards improving our identification of high-risk patients and generating hypotheses of potential biological mechanisms and social factors driving mortality in patients with COPD at the population level. The main limitation of our study is the fact that the analysed datasets consist of older people with extensive smoking history and limited racial diversity. Thus, the results are relevant to high-risk individuals or those diagnosed with COPD and the VAPORED score is validated for them.

FUNDING

This research was supported by NIH [NHLBI, NLM]. The COPDGene study is supported by the COPD Foundation, through grants from AstraZeneca, Bayer Pharmaceuticals, Boehringer Ingelheim, Genentech, GlaxoSmithKline, Novartis, Pfizer and Sunovion.

摘要

背景

慢性阻塞性肺疾病(COPD)是主要的死亡原因之一。预测COPD患者的死亡风险对于疾病管理策略至关重要。尽管此前已开发出全因死亡率预测指标,但直接影响COPD特异性死亡率的因素相关研究有限。

方法

在一项回顾性研究中,我们使用概率图分析临床横断面数据(COPDGene队列),包括人口统计学、肺功能测定、定量胸部成像、症状特征以及基因表达数据。COPDGene从美国各地招募了年龄在45 - 80岁、吸烟史超过10包年的现吸烟者和 former smokers(第一阶段,2007年11月 - 2011年4月),并邀请他们进行随访(第二阶段,2013年7月 - 2017年7月)。ECLIPSE队列招募了年龄在45 - 80岁、吸烟史超过10包年的现吸烟者和 former smokers(来自美国和欧洲的COPD患者及对照)(2005年12月 - 2007年11月)。我们对COPDGene第一阶段参与者的多模态数据应用图形模型,以识别直接影响全因死亡率和COPD特异性死亡率的因素(主要结局);对第二阶段随访队列应用图形模型,以识别影响死亡率的其他分子和社会因素。我们使用惩罚Cox回归和因果图选择的特征构建了VAPORED死亡率风险预测模型。使用四个评估指标(一致性、一致性概率估计(CPE)、累积/动态(C/D)受试者工作特征曲线下面积(AUC)以及综合C/D AUC),将VAPORED与现有评分(BODE:体重指数、气流阻塞、呼吸困难、运动能力;ADO:年龄、呼吸困难、气流阻塞)在按死亡风险对个体进行排名的能力方面进行比较。结果在ECLIPSE中得到验证。

研究结果

对COPDGene第一阶段样本(n = 8610)应用图形模型,分别识别出11个和7个与全因死亡率和COPD特异性死亡率直接相关的变量。尽管许多变量在两个模型中都出现,但非肺部合并症仅出现在全因模型中,而用力肺活量(预测百分比FVC)仅出现在COPD特异性死亡率模型中。此外,第二阶段数据(n = 3182)的图形模型识别出互联网接入、CD4 T细胞和血小板与较低的死亡风险相关。此外,使用与COPD特异性死亡率相关的7个变量(1秒用力呼气量/用力肺活量(FEV/FVC)比值、预测百分比FVC、年龄、肺炎病史、血氧饱和度、6分钟步行距离、呼吸困难),我们开发了一个死亡率风险评分,并在ECLIPSE队列(3年全因死亡率数据,n = 2312)中进行了验证。在ECLIPSE中,VAPORED在预测全因死亡率方面显著优于ADO、BODE和更新后的BODE指数,在一致性方面(VAPORED [0.719] 对比 ADO [0.693;FDR p值0.014]、BODE [0.695;FDR p值0.020] 和更新后的BODE [0.694;FDR p值0.021]);CPE方面(VAPORED [0.714] 对比 ADO [0.673;FDR p值<0.0001]、BODE [0.662;FDR p值<0.0001] 和更新后的BODE [0.646;FDR p值<0.0001]);3年C/D AUC方面(VAPORED [0.728] 对比 ADO [0.702;FDR p值0.017]、BODE [0.704;FDR p值0.021] 和更新后的BODE [0.703;FDR p值0.024]);综合C/D AUC方面(VAPORED [0.723] 对比 ADO [0.698;FDR p值0.047]、BODE [0.695;FDR p值0.024] 和更新后的BODE [0.690;FDR p值0.021])。最后,我们开发了一个网络工具,以帮助临床医生计算VAPORED死亡率风险,并将其与ADO和BODE预测进行比较。

阐释

我们的工作朝着改善对高危患者的识别以及在人群层面生成驱动COPD患者死亡的潜在生物学机制和社会因素的假设迈出了重要一步。我们研究的主要局限性在于所分析的数据集由有广泛吸烟史且种族多样性有限的老年人组成。因此,结果适用于高危个体或那些被诊断为COPD的人,并且VAPORED评分已针对他们进行了验证。

资金支持

本研究由美国国立卫生研究院[美国国立心肺血液研究所、美国国立医学图书馆]资助。COPDGene研究由COPD基金会支持,通过阿斯利康、拜耳制药、勃林格殷格翰、基因泰克、葛兰素史克、诺华、辉瑞和太阳药业的赠款提供资金。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/911c/11388367/3cce66470e0c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验