Suppr超能文献

计算机模拟筛选、分子动力学模拟和结合自由能确定使p53不稳定并减少与DNA结合的单点突变。

In Silico Screening, Molecular Dynamics Simulation and Binding Free Energy Identify Single-Point Mutations That Destabilize p53 and Reduce Binding to DNA.

作者信息

Islam Shahidul M, Hasan Md Mehedi, Alam Jahidul, Dey Anonya, Molineaux Dylan

机构信息

Department of Chemistry, Delaware State University, Dover, Delaware, USA.

Department of Molecular Biology and Biotechnology, Queen's University Belfast, Belfast, UK.

出版信息

Proteins. 2025 Feb;93(2):498-514. doi: 10.1002/prot.26747. Epub 2024 Sep 12.

Abstract

Considering p53's pivotal role as a tumor suppressor protein, proactive identification and characterization of potentially harmful p53 mutations are crucial before they appear in the population. To address this, four computational prediction tools-SIFT, Polyphen-2, PhD-SNP, and MutPred2-utilizing sequence-based and machine-learning algorithms, were employed to identify potentially deleterious p53 nsSNPs (nonsynonymous single nucleotide polymorphisms) that may impact p53 structure, dynamics, and binding with DNA. These computational methods identified three variants, namely, C141Y, C238S, and L265P, as detrimental to p53 stability. Furthermore, molecular dynamics (MD) simulations revealed that all three variants exhibited heightened structural flexibility compared to the native protein, especially the C141Y and L265P mutations. Consequently, due to the altered structure of mutant p53, the DNA-binding affinity of all three variants decreased by approximately 1.8 to 9.7 times compared to wild-type p53 binding with DNA (14 μM). Notably, the L265P mutation exhibited an approximately ten-fold greater reduction in binding affinity. Consequently, the presence of the L265P mutation in p53 could pose a substantial risk to humans. Given that p53 regulates abnormal tumor growth, this research carries significant implications for surveillance efforts and the development of anticancer therapies.

摘要

鉴于p53作为一种肿瘤抑制蛋白的关键作用,在潜在有害的p53突变出现在人群之前进行主动识别和特征描述至关重要。为解决这一问题,我们采用了四种利用基于序列和机器学习算法的计算预测工具——SIFT、Polyphen-2、PhD-SNP和MutPred2,来识别可能影响p53结构、动力学以及与DNA结合的潜在有害p53非同义单核苷酸多态性(nsSNPs)。这些计算方法确定了三个对p53稳定性有害的变体,即C141Y、C238S和L265P。此外,分子动力学(MD)模拟显示,与天然蛋白相比,所有这三个变体都表现出更高的结构灵活性,尤其是C141Y和L265P突变。因此,由于突变型p53结构的改变,与野生型p53与DNA结合(14μM)相比,所有这三个变体的DNA结合亲和力下降了约1.8至9.7倍。值得注意的是,L265P突变的结合亲和力降低了约十倍。因此,p53中L265P突变的存在可能对人类构成重大风险。鉴于p53调节异常肿瘤生长,这项研究对监测工作和抗癌疗法的开发具有重要意义。

相似文献

本文引用的文献

4
Targeting mutations in cancer.靶向癌症中的突变
J Clin Invest. 2022 Apr 15;132(8). doi: 10.1172/JCI154943.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验