Humberg Sarah, Kuper Niclas, Rentzsch Katrin, Gerlach Tanja M, Back Mitja D, Nestler Steffen
Department of Psychology, University of Munster.
Catholic University of Eichstatt-Ingolstadt.
Psychol Methods. 2024 Sep 12. doi: 10.1037/met0000666.
Response surface analysis (RSA) allows researchers to study whether the degree of congruence between two predictor variables is related to a potential psychological outcome. Here, we adapt RSA to the case in which the two predictor variables whose congruence is of interest refer to individual differences in within-person associations (WPAs) between variables that fluctuate over time. For example, a WPA-congruence hypothesis in research on romantic relationships could posit that partners are happier when they have similar social reactivities-that is, when they have similarly strong WPAs between the quantity of their social interactions and their momentary well-being. One method for testing a WPA-congruence hypothesis is a two-step approach in which the individuals' WPAs are first estimated as random slopes in respective multilevel models, and then these estimates are used as predictors in a regular RSA. As an alternative, we suggest combining RSA with multilevel structural equation modeling (MSEM) by specifying the WPAs as random slopes in the structural equation and using their latent second-order terms to predict the outcome on Level 2. We introduce both approaches and provide and explain their corresponding computer code templates. We also compared the two approaches with a simulation study and found that the MSEM model-despite its complexities (e.g., nonlinear functions of latent slopes)-has advantages over the two-step approach. We conclude that the MSEM approach should be used in practice. We demonstrate its application using data from a daily diary study and offer guidance for important decisions (e.g., about standardization). (PsycInfo Database Record (c) 2025 APA, all rights reserved).
响应面分析(RSA)使研究人员能够研究两个预测变量之间的一致性程度是否与潜在的心理结果相关。在此,我们将RSA应用于这样一种情况,即我们感兴趣的一致性的两个预测变量指的是随时间波动的变量之间个体内部关联(WPAs)的个体差异。例如,在浪漫关系研究中的一个WPA一致性假设可能假定,当伴侣具有相似的社交反应性时——也就是说,当他们在社交互动数量和瞬间幸福感之间具有相似强度的WPAs时,他们会更幸福。检验WPA一致性假设的一种方法是两步法,其中首先在各自的多层模型中将个体的WPAs估计为随机斜率,然后将这些估计值用作常规RSA中的预测变量。作为一种替代方法,我们建议将RSA与多层结构方程建模(MSEM)相结合,通过在结构方程中将WPAs指定为随机斜率,并使用它们的潜在二阶项来预测第二层的结果。我们介绍了这两种方法,并提供并解释了它们相应的计算机代码模板。我们还通过模拟研究比较了这两种方法,发现MSEM模型——尽管其具有复杂性(例如,潜在斜率的非线性函数)——比两步法具有优势。我们得出结论,在实践中应使用MSEM方法。我们使用来自每日日记研究的数据展示了其应用,并为重要决策(例如,关于标准化)提供了指导。(PsycInfo数据库记录(c)2025美国心理学会,保留所有权利)