Suppr超能文献

用于行人重识别的图像级自适应对抗排序

Image-Level Adaptive Adversarial Ranking for Person Re-Identification.

作者信息

Yang Xi, Liu Huanling, Wang Nannan, Gao Xinbo

出版信息

IEEE Trans Image Process. 2024;33:5172-5182. doi: 10.1109/TIP.2024.3456000. Epub 2024 Sep 19.

Abstract

The potential vulnerability of deep neural networks and the complexity of pedestrian images, greatly limits the application of person re-identification techniques in the field of smart security. Current attack methods often focus on generating carefully crafted adversarial samples or only disrupting the metric distances between targets and similar pedestrians. However, both aspects are crucial for evaluating the security of methods adapted for person re-identification tasks. For this reason, we propose an image-level adaptive adversarial ranking method that comprehensively considers two aspects to adapt to changes in pedestrians in the real world and effectively evaluate the robustness of models in adversarial environments. To generate more refined adversarial samples, our image representation enhancement module leverages channel-wise information entropy, assigning varying weights to different channels to produce images with richer information content, along with a generative adversarial network to create adversarial samples. Subsequently, for adaptive perturbation of ranking, the adaptive weight confusion ranking loss is presented to calculate the weights of distances between positive or negative samples and query samples. It endeavors to push positive samples away from query samples and bring negative samples closer, thereby interfering with the ranking of system. Notably, this method requires no additional hyperparameter tuning or extra data training, making it an adaptive attack strategy. Experimental results on large-scale datasets such as Market1501, CUHK03, and DukeMTMC demonstrate the effectiveness of our method in attacking ReID systems.

摘要

深度神经网络的潜在脆弱性以及行人图像的复杂性,极大地限制了行人重识别技术在智能安全领域的应用。当前的攻击方法往往侧重于生成精心设计的对抗样本,或者仅扰乱目标与相似行人之间的度量距离。然而,这两个方面对于评估适用于行人重识别任务的方法的安全性都至关重要。因此,我们提出了一种图像级自适应对抗排序方法,该方法综合考虑这两个方面,以适应现实世界中行人的变化,并有效评估模型在对抗环境中的鲁棒性。为了生成更精细的对抗样本,我们的图像表示增强模块利用通道级信息熵,为不同通道分配不同权重,以生成具有更丰富信息内容的图像,同时利用生成对抗网络来创建对抗样本。随后,为了进行排序的自适应扰动,我们提出了自适应权重混淆排序损失,以计算正样本或负样本与查询样本之间距离的权重。它致力于将正样本推离查询样本,并使负样本更接近,从而干扰系统的排序。值得注意的是,该方法无需额外的超参数调整或额外的数据训练,是一种自适应攻击策略。在Market1501、CUHK03和DukeMTMC等大规模数据集上的实验结果证明了我们的方法在攻击重识别系统方面的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验