Zhejiang Tongji Vocational College of Science and Technology, Zhejiang, China.
Zhejiang University of Technology, Zhejiang, China.
PLoS One. 2024 Sep 12;19(9):e0310422. doi: 10.1371/journal.pone.0310422. eCollection 2024.
Portland cement concrete (PCC) is a major contributor to human-made CO2 emissions. To address this environmental impact, fly ash geopolymer concrete (FAGC) has emerged as a promising low-carbon alternative. This study establishes a robust compressive strength prediction model for FAGC and develops an optimal mixture design method to achieve target compressive strength with minimal CO2 emissions. To develop robust prediction models, comprehensive factors, including fly ash characteristics, mixture proportions, curing parameters, and specimen types, are considered, a large dataset comprising 1136 observations is created, and polynomial regression, genetic programming, and ensemble learning are employed. The ensemble learning model shows superior accuracy and generalization ability with an RMSE value of 1.81 MPa and an R2 value of 0.93 in the experimental validation set. Then, the study integrates the developed strength model with a life cycle assessment-based CO2 emissions model, formulating an optimal FAGC mixture design program. A case study validates the effectiveness of this program, demonstrating a 16.7% reduction in CO2 emissions for FAGC with a compressive strength of 50 MPa compared to traditional trial-and-error design. Moreover, compared to PCC, the developed FAGC achieves a substantial 60.3% reduction in CO2 emissions. This work provides engineers with tools for compressive strength prediction and low carbon optimization of FAGC, enabling rapid and highly accurate design of concrete with lower CO2 emissions and greater sustainability.
波特兰水泥混凝土(PCC)是人为 CO2 排放的主要贡献者。为了解决这一环境影响,粉煤灰地质聚合物混凝土(FAGC)作为一种有前途的低碳替代品出现了。本研究为 FAGC 建立了强大的抗压强度预测模型,并开发了一种最佳的混合设计方法,以在最小化 CO2 排放的情况下实现目标抗压强度。为了开发强大的预测模型,综合考虑了包括粉煤灰特性、配合比、养护参数和试件类型在内的综合因素,创建了一个包含 1136 个观测值的大型数据集,并采用多项式回归、遗传编程和集成学习进行分析。集成学习模型在实验验证集上具有 1.81 MPa 的 RMSE 值和 0.93 的 R2 值,表现出更高的准确性和泛化能力。然后,本研究将开发的强度模型与基于生命周期评估的 CO2 排放模型相结合,制定了一个最佳的 FAGC 混合设计方案。一个案例研究验证了该方案的有效性,与传统的反复试验设计相比,50 MPa 抗压强度的 FAGC 可减少 16.7%的 CO2 排放。此外,与 PCC 相比,所开发的 FAGC 可将 CO2 排放量减少 60.3%。这项工作为工程师提供了 FAGC 抗压强度预测和低碳优化的工具,使具有更低 CO2 排放和更高可持续性的混凝土能够快速且高度准确地设计。