Gunasekara Chamila, Atzarakis Peter, Lokuge Weena, Law David W, Setunge Sujeeva
School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC 3000, Australia.
School of Civil Engineering and Surveying, University of Southern Queensland, Springfield, QSL 4300, Australia.
Polymers (Basel). 2021 Mar 15;13(6):900. doi: 10.3390/polym13060900.
Despite extensive in-depth research into high calcium fly ash geopolymer concretes and a number of proposed methods to calculate the mix proportions, no universally applicable method to determine the mix proportions has been developed. This paper uses an artificial neural network (ANN) machine learning toolbox in a MATLAB programming environment together with a Bayesian regularization algorithm, the Levenberg-Marquardt algorithm and a scaled conjugate gradient algorithm to attain a specified target compressive strength at 28 days. The relationship between the four key parameters, namely water/solid ratio, alkaline activator/binder ratio, NaSiO/NaOH ratio and NaOH molarity, and the compressive strength of geopolymer concrete is determined. The geopolymer concrete mix proportions based on the ANN algorithm model and contour plots developed were experimentally validated. Thus, the proposed method can be used to determine mix designs for high calcium fly ash geopolymer concrete in the range 25-45 MPa at 28 days. In addition, the design equations developed using the statistical regression model provide an insight to predict tensile strength and elastic modulus for a given compressive strength.
尽管对高钙粉煤灰地质聚合物混凝土进行了广泛深入的研究,并提出了一些计算配合比的方法,但尚未开发出一种普遍适用的确定配合比的方法。本文在MATLAB编程环境中使用人工神经网络(ANN)机器学习工具箱,结合贝叶斯正则化算法、列文伯格-马夸尔特算法和缩放共轭梯度算法,以达到28天规定的目标抗压强度。确定了四个关键参数,即水/固比、碱性激发剂/胶凝材料比、硅酸钠/氢氧化钠比和氢氧化钠摩尔浓度与地质聚合物混凝土抗压强度之间的关系。基于ANN算法模型和开发的等高线图确定的地质聚合物混凝土配合比通过实验得到了验证。因此,所提出的方法可用于确定28天抗压强度在25-45MPa范围内的高钙粉煤灰地质聚合物混凝土的配合比设计。此外,使用统计回归模型开发的设计方程为预测给定抗压强度下的抗拉强度和弹性模量提供了见解。