Suppr超能文献

微波驱动石墨@α-MnO的介电-磁调控以增强电磁波吸收

Microwave-Driven Dielectric-Magnetic Regulation of Graphite@α-MnO Toward Enhanced Electromagnetic Wave Absorption.

作者信息

Lu Junyu, Xu Lei, Xie Cheng, Zhang Chang, Han Zhaohui, Ren Yiyao, Che Renchao

机构信息

Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China.

National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, 650093, PR China.

出版信息

Adv Sci (Weinh). 2025 Jun 20:e04489. doi: 10.1002/advs.202504489.

Abstract

The advancement of wireless communication technologies necessitates materials that absorb electromagnetic waves and shield against electromagnetic interference. The research is propelled by the necessity to develop materials that possess both properties. Here, an electromagnetic wave-absorbing material that synergistically regulates dielectric and magnetic properties is developed. The material features a nanowire fabric/multilayer composite structure of expanded graphite@α-MnO (EG@MO). The manganese oxide nanowires are prepared in situ on the surface of multilayer expanded graphite via microwave-assisted hydrothermal synthesis. A rapid microwave activation process is subsequently performed to convert manganese oxide-hydroxide, elevating its oxidation state, and transforming it from a non-magnetic form to the magnetic α-MnO. The EG@MO exhibits exceptional electromagnetic wave absorption capabilities, achieving a reflection loss value of -75.56 dB, with a low filler ratio of 7 wt.% and an ultrathin thickness of 1.48 mm. This high-performance electromagnetic absorption material, fabricated by integrating magnetic manganese dioxide nanowires with multilayer expanded graphite, shows excellent widespread applications.

摘要

无线通信技术的进步需要能够吸收电磁波并屏蔽电磁干扰的材料。对同时具备这两种特性的材料的开发需求推动了此项研究。在此,开发了一种能协同调节介电和磁性能的电磁波吸收材料。该材料具有膨胀石墨@α - 二氧化锰(EG@MO)的纳米线织物/多层复合结构。通过微波辅助水热合成法在多层膨胀石墨表面原位制备氧化锰纳米线。随后进行快速微波活化过程以转化氢氧化锰,提高其氧化态,并将其从非磁性形式转变为磁性α - 二氧化锰。EG@MO展现出卓越的电磁波吸收能力,在填充率低至7 wt.%且厚度超薄仅为1.48 mm的情况下,实现了 - 75.56 dB的反射损耗值。这种通过将磁性二氧化锰纳米线与多层膨胀石墨相结合制备的高性能电磁吸收材料具有出色的广泛应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验