Yale Cancer Outcomes, Public Policy and Effectiveness Research (COPPER) Center, New Haven, CT.
Yale University, New Haven, CT.
JCO Clin Cancer Inform. 2024 Sep;8:e2400134. doi: 10.1200/CCI.24.00134.
Data on end-of-life care (EOLC) quality, assessed through evidence-based quality measures (QMs), are difficult to obtain. Natural language processing (NLP) enables efficient quality measurement and is not yet used for children with serious illness. We sought to validate a pediatric-specific EOLC-QM keyword library and evaluate EOLC-QM attainment among childhood cancer decedents.
In a single-center cohort of children with cancer who died between 2014 and 2022, we piloted a rule-based NLP approach to examine the content of clinical notes in the last 6 months of life. We identified documented discussions of five EOLC-QMs: goals of care, limitations to life-sustaining treatments (LLST), hospice, palliative care consultation, and preferred location of death. We assessed performance of NLP methods, compared with gold standard manual chart review. We then used NLP to characterize proportions of decedents with documented EOLC-QM discussions and timing of first documentation relative to death.
Among 101 decedents, nearly half were minorities (Hispanic/Latinx [24%], non-Hispanic Black/African American [20%]), female (48%), or diagnosed with solid tumors (43%). Through iterative refinement, our keyword library achieved robust performance statistics (for all EOLC-QMs, F1 score = 1.0). Most decedents had documented discussions regarding goals of care (83%), LLST (83%), and hospice (74%). Fewer decedents had documented discussions regarding palliative care consultation (49%) or preferred location of death (36%). For all five EOLC-QMs, first documentation occurred, on average, >30 days before death.
A high proportion of decedents attained specified EOLC-QMs more than 30 days before death. Our findings indicate that NLP is a feasible approach to measuring quality of care for children with cancer at the end of life and is ripe for multi-center research and quality improvement.
通过基于证据的质量指标(QMs)评估临终关怀(EOLC)质量的数据难以获得。自然语言处理(NLP)可实现高效的质量测量,尚未用于患有严重疾病的儿童。我们试图验证一个儿科特定的 EOLC-QM 关键词库,并评估儿童癌症死亡患者的 EOLC-QM 达标情况。
在 2014 年至 2022 年间死于癌症的单中心儿童队列中,我们对基于规则的 NLP 方法进行了试点,以检查生命最后 6 个月的临床记录内容。我们确定了五个 EOLC-QM 的记录讨论:治疗目标、对维持生命治疗的限制、临终关怀、姑息治疗咨询和死亡首选地点。我们评估了 NLP 方法的性能,并与金标准手动图表审查进行了比较。然后,我们使用 NLP 来描述记录有 EOLC-QM 讨论的死者比例以及首次记录相对于死亡的时间。
在 101 名死者中,近一半是少数民族(西班牙裔/拉丁裔[24%]、非西班牙裔黑人/非裔美国人[20%])、女性(48%)或诊断为实体瘤(43%)。通过迭代改进,我们的关键词库实现了稳健的性能统计数据(所有 EOLC-QM 的 F1 得分为 1.0)。大多数死者都有关于治疗目标(83%)、维持生命治疗限制(83%)和临终关怀(74%)的记录讨论。关于姑息治疗咨询(49%)或死亡首选地点(36%)的记录讨论较少。对于所有五个 EOLC-QM,首次记录平均在死亡前 30 天以上。
大多数死者在死亡前 30 多天达到了特定的 EOLC-QM。我们的研究结果表明,NLP 是一种可行的方法,可以衡量生命末期儿童癌症患者的护理质量,非常适合进行多中心研究和质量改进。