Suppr超能文献

SpeechBrain-MOABB:一个用于基准测试应用于 EEG 信号的深度神经网络的开源 Python 库。

SpeechBrain-MOABB: An open-source Python library for benchmarking deep neural networks applied to EEG signals.

机构信息

Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena, Forlì-Cesena, Italy.

Fondazione Bruno Kessler, Povo, Trento, Italy.

出版信息

Comput Biol Med. 2024 Nov;182:109097. doi: 10.1016/j.compbiomed.2024.109097. Epub 2024 Sep 11.

Abstract

Deep learning has revolutionized EEG decoding, showcasing its ability to outperform traditional machine learning models. However, unlike other fields, EEG decoding lacks comprehensive open-source libraries dedicated to neural networks. Existing tools (MOABB and braindecode) prevent the creation of robust and complete decoding pipelines, as they lack support for hyperparameter search across the entire pipeline, and are sensitive to fluctuations in results due to network random initialization. Furthermore, the absence of a standardized experimental protocol exacerbates the reproducibility crisis in the field. To address these limitations, we introduce SpeechBrain-MOABB, a novel open-source toolkit carefully designed to facilitate the development of a comprehensive EEG decoding pipeline based on deep learning. SpeechBrain-MOABB incorporates a complete experimental protocol that standardizes critical phases, such as hyperparameter search and model evaluation. It natively supports multi-step hyperparameter search for finding the optimal hyperparameters in a high-dimensional space defined by the entire pipeline, and multi-seed training and evaluation for obtaining performance estimates robust to the variability caused by random initialization. SpeechBrain-MOABB outperforms other libraries, including MOABB and braindecode, with accuracy improvements of 14.9% and 25.2% (on average), respectively. By enabling easy-to-use and easy-to-share decoding pipelines, our toolkit can be exploited by neuroscientists for decoding EEG with neural networks in a replicable and trustworthy way.

摘要

深度学习彻底改变了 EEG 解码,展示了其超越传统机器学习模型的能力。然而,与其他领域不同的是,EEG 解码缺乏专门针对神经网络的全面开源库。现有的工具(MOABB 和 braindecode)无法创建稳健和完整的解码管道,因为它们缺乏对整个管道中超参数搜索的支持,并且由于网络随机初始化,结果容易波动。此外,缺乏标准化的实验协议加剧了该领域的可重复性危机。为了解决这些限制,我们引入了 SpeechBrain-MOABB,这是一个新的开源工具包,旨在促进基于深度学习的全面 EEG 解码管道的开发。SpeechBrain-MOABB 采用了完整的实验协议,标准化了关键阶段,如超参数搜索和模型评估。它原生支持多步骤超参数搜索,以便在由整个管道定义的高维空间中找到最佳超参数,并支持多种子训练和评估,以获得对随机初始化引起的变异性稳健的性能估计。SpeechBrain-MOABB 优于其他库,包括 MOABB 和 braindecode,其准确性分别提高了 14.9%和 25.2%(平均)。通过提供易于使用和易于共享的解码管道,我们的工具包可供神经科学家用于以可复制和可信赖的方式使用神经网络对 EEG 进行解码。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验