Suppr超能文献

基于脑连接和时频融合的听觉空间注意检测。

Brain connectivity and time-frequency fusion-based auditory spatial attention detection.

机构信息

School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

出版信息

Neuroscience. 2024 Nov 12;560:397-405. doi: 10.1016/j.neuroscience.2024.09.017. Epub 2024 Sep 10.

Abstract

Auditory spatial attention detection (ASAD) aims to decipher the spatial locus of a listener's selective auditory attention from electroencephalogram (EEG) signals. However, current models may exhibit deficiencies in EEG feature extraction, leading to overfitting on small datasets or a decline in EEG discriminability. Furthermore, they often neglect topological relationships between EEG channels and, consequently, brain connectivities. Although graph-based EEG modeling has been employed in ASAD, effectively incorporating both local and global connectivities remains a great challenge. To address these limitations, we propose a new ASAD model. First, time-frequency feature fusion provides a more precise and discriminative EEG representation. Second, EEG segments are treated as graphs, and the graph convolution and global attention mechanism are leveraged to capture local and global brain connections, respectively. A series of experiments are conducted in a leave-trials-out cross-validation manner. On the MAD-EEG and KUL datasets, the accuracies of the proposed model are more than 9% and 3% higher than those of the corresponding state-of-the-art models, respectively, while the accuracy of the proposed model on the SNHL dataset is roughly comparable to that of the state-of-the-art model. EEG time-frequency feature fusion proves to be indispensable in the proposed model. EEG electrodes over the frontal cortex are most important for ASAD tasks, followed by those over the temporal lobe. Additionally, the proposed model performs well even on small datasets. This study contributes to a deeper understanding of the neural encoding related to human hearing and attention, with potential applications in neuro-steered hearing devices.

摘要

听觉空间注意检测(ASAD)旨在从脑电图(EEG)信号中解码听众选择性听觉注意的空间轨迹。然而,当前的模型可能在 EEG 特征提取方面存在不足,导致在小数据集上过度拟合或 EEG 可辨别性下降。此外,它们通常忽略 EEG 通道之间的拓扑关系,从而忽略了大脑连通性。尽管基于图的 EEG 建模已应用于 ASAD,但有效结合局部和全局连通性仍然是一个巨大的挑战。为了解决这些限制,我们提出了一种新的 ASAD 模型。首先,时频特征融合提供了更精确和可区分的 EEG 表示。其次,将 EEG 段视为图,并利用图卷积和全局注意力机制分别捕获局部和全局大脑连接。通过在留一试验交叉验证的方式进行了一系列实验。在 MAD-EEG 和 KUL 数据集上,所提出模型的准确性分别比相应的最先进模型高 9%和 3%,而在 SNHL 数据集上,所提出模型的准确性与最先进模型大致相当。EEG 时频特征融合在提出的模型中被证明是不可或缺的。额叶上的 EEG 电极对 ASAD 任务最重要,其次是颞叶上的电极。此外,该模型即使在小数据集上也能很好地运行。本研究有助于更深入地了解与人类听力和注意力相关的神经编码,在神经导向听力设备中有潜在的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验