Wang Fanhao, Wang Yuzhe, Feng Laiyi, Zhang Changsheng, Lai Luhua
Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
J Chem Inf Model. 2024 Dec 23;64(24):9135-9149. doi: 10.1021/acs.jcim.4c00975. Epub 2024 Sep 12.
Despite the exciting progress in target-specific protein binder design, peptide binder design remains challenging due to the flexibility of peptide structures and the scarcity of protein-peptide complex structure data. In this study, we curated a large synthetic data set, referred to as PepPC-F, from the abundant protein-protein interface data and developed DiffPepBuilder, a target-specific peptide binder generation method that utilizes an SE(3)-equivariant diffusion model trained on PepPC-F to codesign peptide sequences and structures. DiffPepBuilder also introduces disulfide bonds to stabilize the generated peptide structures. We tested DiffPepBuilder on 30 experimentally verified strong peptide binders with available protein-peptide complex structures. DiffPepBuilder was able to effectively recall the native structures and sequences of the peptide ligands and to generate novel peptide binders with improved binding free energy. We subsequently conducted generation case studies on three targets. In both the regeneration test and case studies, DiffPepBuilder outperformed AfDesign and RFdiffusion coupled with ProteinMPNN, in terms of sequence and structure recall, interface quality, and structural diversity. Molecular dynamics simulations confirmed that the introduction of disulfide bonds enhanced the structural rigidity and binding performance of the generated peptides. As a general peptide binder design tool, DiffPepBuilder can be used to design peptide binders for given protein targets with three-dimensional and binding site information.
尽管在靶向特异性蛋白质结合剂设计方面取得了令人兴奋的进展,但由于肽结构的灵活性和蛋白质 - 肽复合物结构数据的稀缺性,肽结合剂设计仍然具有挑战性。在本研究中,我们从丰富的蛋白质 - 蛋白质界面数据中精心策划了一个大型合成数据集,称为PepPC - F,并开发了DiffPepBuilder,这是一种靶向特异性肽结合剂生成方法,它利用在PepPC - F上训练的SE(3)等变扩散模型来协同设计肽序列和结构。DiffPepBuilder还引入二硫键来稳定生成的肽结构。我们在30个具有可用蛋白质 - 肽复合物结构的经实验验证的强肽结合剂上测试了DiffPepBuilder。DiffPepBuilder能够有效地召回肽配体的天然结构和序列,并生成具有改善结合自由能的新型肽结合剂。我们随后对三个靶点进行了生成案例研究。在再生测试和案例研究中,DiffPepBuilder在序列和结构召回率、界面质量和结构多样性方面均优于AfDesign以及与ProteinMPNN耦合的RFdiffusion。分子动力学模拟证实,二硫键的引入增强了生成肽的结构刚性和结合性能。作为一种通用的肽结合剂设计工具,DiffPepBuilder可用于为具有三维和结合位点信息的给定蛋白质靶点设计肽结合剂。