Suppr超能文献

三级模体作为设计与蛋白质结合的肽的结构模块。

Tertiary motifs as building blocks for the design of protein-binding peptides.

机构信息

Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Department of Computer Science, Dartmouth College, Hanover, New Hampshire, USA.

出版信息

Protein Sci. 2022 Jun;31(6):e4322. doi: 10.1002/pro.4322.

Abstract

Despite advances in protein engineering, the de novo design of small proteins or peptides that bind to a desired target remains a difficult task. Most computational methods search for binder structures in a library of candidate scaffolds, which can lead to designs with poor target complementarity and low success rates. Instead of choosing from pre-defined scaffolds, we propose that custom peptide structures can be constructed to complement a target surface. Our method mines tertiary motifs (TERMs) from known structures to identify surface-complementing fragments or "seeds." We combine seeds that satisfy geometric overlap criteria to generate peptide backbones and score the backbones to identify the most likely binding structures. We found that TERM-based seeds can describe known binding structures with high resolution: the vast majority of peptide binders from 486 peptide-protein complexes can be covered by seeds generated from single-chain structures. Furthermore, we demonstrate that known peptide structures can be reconstructed with high accuracy from peptide-covering seeds. As a proof of concept, we used our method to design 100 peptide binders of TRAF6, seven of which were predicted by Rosetta to form higher-quality interfaces than a native binder. The designed peptides interact with distinct sites on TRAF6, including the native peptide-binding site. These results demonstrate that known peptide-binding structures can be constructed from TERMs in single-chain structures and suggest that TERM information can be applied to efficiently design novel target-complementing binders.

摘要

尽管在蛋白质工程方面取得了进展,但从头设计与目标结合的小蛋白或肽仍然是一项艰巨的任务。大多数计算方法在候选支架库中搜索结合结构,这可能导致设计与目标的互补性差,成功率低。我们建议可以构建定制的肽结构来补充目标表面,而不是从预定义的支架中进行选择。我们的方法从已知结构中挖掘三级基序 (TERM),以识别表面互补的片段或“种子”。我们结合满足几何重叠标准的种子来生成肽骨架,并对骨架进行评分,以识别最有可能的结合结构。我们发现基于 TERM 的种子可以非常准确地描述已知的结合结构:486 个肽-蛋白复合物中的绝大多数肽结合物都可以用来自单链结构的种子来覆盖。此外,我们证明可以从覆盖肽的种子中以高精度重建已知的肽结构。作为概念验证,我们使用该方法设计了 100 个 TRAF6 的肽结合物,其中 7 个被 Rosetta 预测比天然结合物形成更高质量的界面。设计的肽与 TRAF6 上的不同位点相互作用,包括天然的肽结合位点。这些结果表明,可以从单链结构中的 TERM 构建已知的肽结合结构,并表明 TERM 信息可用于有效地设计新的目标互补结合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc1/9088223/f6c47e970790/PRO-31-e4322-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验