Yang W, Ding X, Yu Y, Lan Z, Yu L, Yuan J, Xu Z, Sun J, Wang Y, Zhang J
Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, China.
Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, #85 Wujin Rd, Shanghai, China.
Clin Radiol. 2024 Dec;79(12):931-940. doi: 10.1016/j.crad.2024.08.018. Epub 2024 Aug 21.
To investigate the long-term prognostic value of coronary computed tomography angiography (CCTA)-derived high-risk attributes and radiomic features of pericoronary adipose tissue (PCAT) in diabetic patients for predicting major adverse cardiac event (MACE).
Diabetic patients with intermediate pre-test probability of coronary artery disease were prospectively enrolled and referred for CCTA. Three models (model-1 with clinical parameters; model-2 with clinical factors + CCTA imaging parameters; model-3 with the above parameters and PCAT radiomic features) were developed in the training cohort (835 patients) and tested in the independent validation cohort (557 patients). 1392 patients were included and MACEs occurred in 108 patients (7.8%). Multivariable Cox regression analysis revealed that HbA1c, coronary calcium Agatston score, significant stenosis and high-risk plaque were independent predictors for MACE whereas none of PCAT radiomic features showed predictive value. In the training cohort, model-2 demonstrated higher predictive performance over model-1 (C-index = 0.79 vs. 0.68, p < 0.001) whereas model-3 did not show incremental value over model-2(C-index = 0.79 vs. 0.80, p = 0.408). Similar findings were found in the validation cohort.
The combined model (clinical and CCTA high-risk anatomical features) demonstrated high efficacy in predicting MACE in diabetes. PCAT radiomic features failed to show incremental value for risk stratification.
探讨冠状动脉计算机断层扫描血管造影(CCTA)衍生的高危特征及冠状动脉周围脂肪组织(PCAT)的放射组学特征对糖尿病患者主要不良心脏事件(MACE)的长期预后价值。
前瞻性纳入冠状动脉疾病预测试概率为中等的糖尿病患者并进行CCTA检查。在训练队列(835例患者)中建立了三个模型(模型1为临床参数;模型2为临床因素+CCTA成像参数;模型3为上述参数及PCAT放射组学特征),并在独立验证队列(557例患者)中进行测试。共纳入1392例患者,108例(7.8%)发生MACE。多变量Cox回归分析显示,糖化血红蛋白、冠状动脉钙化阿加斯顿评分、显著狭窄和高危斑块是MACE的独立预测因素,而PCAT的放射组学特征均无预测价值。在训练队列中,模型2的预测性能高于模型1(C指数=0.79对0.68,p<0.001),而模型3相对于模型2未显示出增量价值(C指数=0.79对0.80,p=0.408)。在验证队列中也发现了类似的结果。
联合模型(临床和CCTA高危解剖特征)在预测糖尿病患者MACE方面显示出高效能。PCAT放射组学特征在风险分层中未显示出增量价值。