Suppr超能文献

计算机断层扫描血管造影术检测的冠状动脉周围脂肪组织的影像组学可预测2型糖尿病患者的冠心病。

Radiomics of pericoronary adipose tissue on computed tomography angiography predicts coronary heart disease in patients with type 2 diabetes mellitus.

作者信息

Miao Shumei, Yu Feihong, Sheng Rongrong, Zhang Xiaoliang, Li Yong, Qi Yaolei, Lu Shan, Ji Pei, Fan Jiyue, Zhang Xin, Xu Tingyu, Wang Zhongmin, Liu Yun, Yang Guanyu

机构信息

School of Computer Science and Engineering, Southeast University, Sipailou 2, Nanjing, 210096, Jiangsu, China.

Department of Information, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.

出版信息

BMC Cardiovasc Disord. 2024 Jun 12;24(1):300. doi: 10.1186/s12872-024-03970-4.

Abstract

BACKGROUND

Diabetes is a common chronic metabolic disease. The progression of the disease promotes vascular inflammation and the formation of atherosclerosis, leading to cardiovascular disease. The coronary artery perivascular adipose tissue attenuation index based on CCTA is a new noninvasive imaging biomarker that reflects the spatial changes in perivascular adipose tissue attenuation in CCTA images and the inflammation around the coronary arteries. In this study, a radiomics approach is proposed to extract a large number of image features from CCTA in a high-throughput manner and combined with clinical diagnostic data to explore the predictive ability of vascular perivascular adipose imaging data based on CCTA for coronary heart disease in diabetic patients.

METHODS

R language was used for statistical analysis to screen the variables with significant differences. A presegmentation model was used for CCTA vessel segmentation, and the pericoronary adipose region was screened out. PyRadiomics was used to calculate the radiomics features of pericoronary adipose tissue, and SVM, DT and RF were used to model and analyze the clinical data and radiomics data. Model performance was evaluated using indicators such as PPV, FPR, AAC, and ROC.

RESULTS

The results indicate that there are significant differences in age, blood pressure, and some biochemical indicators between diabetes patients with and without coronary heart disease. Among 1037 calculated radiomic parameters, 18.3% showed significant differences in imaging omics features. Three modeling methods were used to analyze different combinations of clinical information, internal vascular radiomics information and pericoronary vascular fat radiomics information. The results showed that the dataset of full data had the highest ACC values under different machine learning models. The support vector machine method showed the best specificity, sensitivity, and accuracy for this dataset.

CONCLUSIONS

In this study, the clinical data and pericoronary radiomics data of CCTA were fused to predict the occurrence of coronary heart disease in diabetic patients. This provides information for the early detection of coronary heart disease in patients with diabetes and allows for timely intervention and treatment.

摘要

背景

糖尿病是一种常见的慢性代谢性疾病。疾病的进展会促进血管炎症和动脉粥样硬化的形成,进而导致心血管疾病。基于CCTA的冠状动脉血管周围脂肪组织衰减指数是一种新的无创成像生物标志物,可反映CCTA图像中血管周围脂肪组织衰减的空间变化以及冠状动脉周围的炎症。在本研究中,提出了一种放射组学方法,以高通量方式从CCTA中提取大量图像特征,并结合临床诊断数据,探讨基于CCTA的血管周围脂肪成像数据对糖尿病患者冠心病的预测能力。

方法

使用R语言进行统计分析,以筛选出具有显著差异的变量。使用预分割模型对CCTA血管进行分割,并筛选出冠状动脉周围脂肪区域。使用PyRadiomics计算冠状动脉周围脂肪组织的放射组学特征,并使用支持向量机(SVM)、决策树(DT)和随机森林(RF)对临床数据和放射组学数据进行建模和分析。使用PPV、FPR、AAC和ROC等指标评估模型性能。

结果

结果表明,有冠心病和无冠心病的糖尿病患者在年龄、血压和一些生化指标方面存在显著差异。在计算出的1037个放射组学参数中,18.3%的成像组学特征显示出显著差异。使用三种建模方法分析临床信息、内部血管放射组学信息和冠状动脉周围血管脂肪放射组学信息的不同组合。结果表明,在不同的机器学习模型下,完整数据的数据集具有最高的ACC值。支持向量机方法对该数据集显示出最佳的特异性、敏感性和准确性。

结论

在本研究中,融合了CCTA的临床数据和冠状动脉周围放射组学数据,以预测糖尿病患者冠心病的发生。这为糖尿病患者冠心病的早期检测提供了信息,并允许及时进行干预和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a6d/11167783/ef1bc31230e5/12872_2024_3970_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验