National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Nat Commun. 2024 Sep 12;15(1):7993. doi: 10.1038/s41467-024-52418-y.
Electroceuticals, through the selective modulation of peripheral nerves near target organs, are promising for treating refractory diseases. However, the small sizes and the delicate nature of these nerves present challenges in simplifying the fixation and stabilizing the electrical-coupling interface for neural electrodes. Herein, we construct a robust neural interface for fine peripheral nerves using an injectable bio-adhesive hydrogel bioelectronics. By incorporating a multifunctional molecular regulator during network formation, we optimize the injectability and conductivity of the hydrogel through fine-tuning reaction kinetics and multi-scale interactions within the conductive network. Meanwhile, the mechanical and electrical stability of the hydrogel is achieved without compromising its injectability. Minimal tissue damage along with low and stable impedance of the injectable neural interface enables chronic vagus neuromodulation for myocardial infarction therapy in the male rat model. Our highly-stable, injectable, conductive hydrogel bioelectronics are readily available to target challenging anatomical locations, paving the way for future precision bioelectronic medicine.
电疗通过选择性调节目标器官附近的周围神经,有望治疗难治性疾病。然而,这些神经的体积小且性质脆弱,这给神经电极的固定和稳定电耦合界面带来了挑战。在这里,我们使用可注射的生物黏附水凝胶电子学构建了一种用于精细周围神经的坚固神经接口。通过在网络形成过程中加入多功能分子调节剂,我们通过精细调整反应动力学和导电网络内的多尺度相互作用来优化水凝胶的可注射性和导电性。同时,在不牺牲其可注射性的情况下实现水凝胶的机械和电气稳定性。这种可注射神经接口的组织损伤最小,且阻抗低且稳定,可在雄性大鼠模型中进行慢性迷走神经调节以治疗心肌梗死。我们的高稳定性、可注射、导电水凝胶电子学可轻松应用于具有挑战性的解剖部位,为未来的精准生物电子医学铺平了道路。