文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过模板导向组装制备高导电类似组织的水凝胶界面。

Highly conductive tissue-like hydrogel interface through template-directed assembly.

机构信息

Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.

出版信息

Nat Commun. 2023 Apr 18;14(1):2206. doi: 10.1038/s41467-023-37948-1.


DOI:10.1038/s41467-023-37948-1
PMID:37072411
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10113367/
Abstract

Over the past decade, conductive hydrogels have received great attention as tissue-interfacing electrodes due to their soft and tissue-like mechanical properties. However, a trade-off between robust tissue-like mechanical properties and good electrical properties has prevented the fabrication of a tough, highly conductive hydrogel and limited its use in bioelectronics. Here, we report a synthetic method for the realization of highly conductive and mechanically tough hydrogels with tissue-like modulus. We employed a template-directed assembly method, enabling the arrangement of a disorder-free, highly-conductive nanofibrous conductive network inside a highly stretchable, hydrated network. The resultant hydrogel exhibits ideal electrical and mechanical properties as a tissue-interfacing material. Furthermore, it can provide tough adhesion (800 J/m) with diverse dynamic wet tissue after chemical activation. This hydrogel enables suture-free and adhesive-free, high-performance hydrogel bioelectronics. We successfully demonstrated ultra-low voltage neuromodulation and high-quality epicardial electrocardiogram (ECG) signal recording based on in vivo animal models. This template-directed assembly method provides a platform for hydrogel interfaces for various bioelectronic applications.

摘要

在过去的十年中,由于具有柔软的类似组织的机械性能,导电水凝胶作为组织界面电极受到了极大的关注。然而,在稳健的类似组织的机械性能和良好的电性能之间存在折衷,这阻止了坚韧、高导电性水凝胶的制造,并限制了其在生物电子学中的应用。在这里,我们报告了一种实现具有类似组织模量的高导电性和机械坚韧的水凝胶的合成方法。我们采用了模板导向组装方法,使无定形、高导电性的纳米纤维导电网络在高可拉伸、水合网络内部排列。所得水凝胶作为组织界面材料表现出理想的电气和机械性能。此外,它可以在化学激活后与各种动态湿组织提供坚韧的附着力(800 J/m)。这种水凝胶实现了无缝合和无粘合剂的高性能水凝胶生物电子学。我们成功地基于体内动物模型演示了超低电压神经调节和高质量心外膜心电图(ECG)信号记录。这种模板导向组装方法为各种生物电子应用的水凝胶界面提供了一个平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/552b/10113367/21e98a937a21/41467_2023_37948_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/552b/10113367/cb974769cec1/41467_2023_37948_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/552b/10113367/800df925a1ec/41467_2023_37948_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/552b/10113367/042fb10068ca/41467_2023_37948_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/552b/10113367/11885fdf9692/41467_2023_37948_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/552b/10113367/e8dbdb8b5770/41467_2023_37948_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/552b/10113367/21e98a937a21/41467_2023_37948_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/552b/10113367/cb974769cec1/41467_2023_37948_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/552b/10113367/800df925a1ec/41467_2023_37948_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/552b/10113367/042fb10068ca/41467_2023_37948_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/552b/10113367/11885fdf9692/41467_2023_37948_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/552b/10113367/e8dbdb8b5770/41467_2023_37948_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/552b/10113367/21e98a937a21/41467_2023_37948_Fig6_HTML.jpg

相似文献

[1]
Highly conductive tissue-like hydrogel interface through template-directed assembly.

Nat Commun. 2023-4-18

[2]
Electroconductive, Adhesive, Non-Swelling, and Viscoelastic Hydrogels for Bioelectronics.

Adv Mater. 2023-1

[3]
Highly Conducting and Stretchable Double-Network Hydrogel for Soft Bioelectronics.

Adv Mater. 2022-4

[4]
3D printing of highly conductive and strongly adhesive PEDOT:PSS hydrogel-based bioelectronic interface for accurate electromyography monitoring.

J Colloid Interface Sci. 2025-1

[5]
Triple crosslinking conductive hydrogels with digitally printable and outstanding mechanical stability for high-resolution conformable bioelectronics.

Soft Matter. 2022-11-16

[6]
Highly Conductive and Stretchable Hydrogel Nanocomposite Using Whiskered Gold Nanosheets for Soft Bioelectronics.

Adv Mater. 2024-9

[7]
Self-healing, stretchable, and highly adhesive hydrogels for epidermal patch electrodes.

Acta Biomater. 2022-2

[8]
Tissue adhesive hydrogel bioelectronics.

J Mater Chem B. 2021-6-2

[9]
Balanced Coexistence of Reversible and Irreversible Covalent Bonds in a Conductive Triple Polymeric Network Enables Stretchable Hydrogels with High Toughness and Adhesiveness.

ACS Appl Mater Interfaces. 2022-12-21

[10]
Multifunctional Conductive Hydrogel Interface for Bioelectronic Recording and Stimulation.

Adv Healthc Mater. 2024-9

引用本文的文献

[1]
Cellulose hydrogel with in-situ confined nanopores for boosting moist-electric conversion.

Nat Commun. 2025-8-13

[2]
Recent Achievements of Epicardial Patch Electronics Using Adhesive and Conductive Hydrogels.

Gels. 2025-7-9

[3]
Recent Advances in Conductive Hydrogels for Electronic Skin and Healthcare Monitoring.

Biosensors (Basel). 2025-7-18

[4]
Enhanced laser-induced PEDOT-based hydrogels for highly conductive bioelectronics.

Natl Sci Rev. 2025-4-4

[5]
Bioelectric and physicochemical foundations of bioelectronics in tissue regeneration.

Biomaterials. 2025-11

[6]
Recent Progress of Soft and Bioactive Materials in Flexible Bioelectronics.

Cyborg Bionic Syst. 2025-4-29

[7]
Supramolecular Conductive Hydrogels With Homogeneous Ionic and Electronic Transport.

Adv Mater. 2025-4-28

[8]
Polyphenol-Mediated Multifunctional Human-Machine Interface Hydrogel Electrodes in Bioelectronics.

Small Sci. 2024-11-21

[9]
Hydrogel Adhesive Integrated-Microstructured Electrodes for Cuff-Free, Less-Invasive, and Stable Interface for Vagus Nerve Stimulation.

Adv Healthc Mater. 2025-5

[10]
Photopatternable PEDOT:PSS Hydrogels for High-Resolution Photolithography.

Adv Sci (Weinh). 2025-5

本文引用的文献

[1]
Thermal and electrical cross-plane conductivity at the nanoscale in poly(3,4-ethylenedioxythiophene):trifluoromethanesulfonate thin films.

Nanoscale. 2022-4-21

[2]
Highly Conducting and Stretchable Double-Network Hydrogel for Soft Bioelectronics.

Adv Mater. 2022-4

[3]
Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels.

Sci Adv. 2021-5-7

[4]
Tissue adhesive hydrogel bioelectronics.

J Mater Chem B. 2021-6-2

[5]
Adduct-based p-doping of organic semiconductors.

Nat Mater. 2021-9

[6]
Electrical bioadhesive interface for bioelectronics.

Nat Mater. 2021-2

[7]
Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces.

Nat Biomed Eng. 2020-9-21

[8]
Fundamentals of double network hydrogels.

J Mater Chem B. 2015-5-14

[9]
Enhanced Electrical Conductivity and Seebeck Coefficient in PEDOT:PSS via a Two-Step Ionic liquid and NaBH Treatment for Organic Thermoelectrics.

Polymers (Basel). 2020-3-3

[10]
Room-Temperature-Formed PEDOT:PSS Hydrogels Enable Injectable, Soft, and Healable Organic Bioelectronics.

Adv Mater. 2019-10-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索