Chen Shuo, Peng Mao, Li Yijin, Ju Bing-Feng, Bao Hujun, Chen Yuan-Liu, Zhang Guofeng
State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China.
State Key Lab of Fluid Power&Mechatronic Systems, Zhejiang University, Hangzhou, China.
Commun Eng. 2024 Sep 12;3(1):131. doi: 10.1038/s44172-024-00270-9.
Atomic Force Microscopy (AFM) is a widely employed tool for micro- and nanoscale topographic imaging. However, conventional AFM scanning struggles to reconstruct complex 3D micro- and nanostructures precisely due to limitations such as incomplete sample topography capturing and tip-sample convolution artifacts. Here, we propose a multi-view neural-network-based framework with AFM, named MVN-AFM, which accurately reconstructs surface models of intricate micro- and nanostructures. Unlike previous 3D-AFM approaches, MVN-AFM does not depend on any specially shaped probes or costly modifications to the AFM system. To achieve this, MVN-AFM employs an iterative method to align multi-view data and eliminate AFM artifacts simultaneously. Furthermore, we apply the neural implicit surface reconstruction technique in nanotechnology and achieve improved results. Additional extensive experiments show that MVN-AFM effectively eliminates artifacts present in raw AFM images and reconstructs various micro- and nanostructures, including complex geometrical microstructures printed via two-photon lithography and nanoparticles such as poly(methyl methacrylate) (PMMA) nanospheres and zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. This work presents a cost-effective tool for micro- and nanoscale 3D analysis.
原子力显微镜(AFM)是一种广泛应用于微观和纳米尺度形貌成像的工具。然而,由于诸如样本形貌捕捉不完整和针尖-样本卷积伪影等限制,传统的AFM扫描难以精确重建复杂的三维微观和纳米结构。在此,我们提出了一种基于多视图神经网络的AFM框架,称为MVN-AFM,它能够准确地重建复杂微观和纳米结构的表面模型。与以往的三维AFM方法不同,MVN-AFM不依赖于任何特殊形状的探针或对AFM系统进行昂贵的改装。为此,MVN-AFM采用迭代方法来对齐多视图数据并同时消除AFM伪影。此外,我们将神经隐式表面重建技术应用于纳米技术并取得了更好的结果。更多广泛的实验表明,MVN-AFM有效地消除了原始AFM图像中存在的伪影,并重建了各种微观和纳米结构,包括通过双光子光刻打印的复杂几何微观结构以及诸如聚甲基丙烯酸甲酯(PMMA)纳米球和沸石咪唑酯骨架-67(ZIF-67)纳米晶体等纳米颗粒。这项工作为微观和纳米尺度的三维分析提供了一种经济高效的工具。