Suppr超能文献

探索酒精使用障碍患者酒精戒断综合征的核心症状:一种网络分析方法。

Exploring core symptoms of alcohol withdrawal syndrome in alcohol use disorder patients: a network analysis approach.

作者信息

Shen Guanghui, Chen Yu-Hsin, Wu Yuyu, Jiahui Huang, Fang Juan, Jiayi Tang, Yimin Kang, Wang Wei, Liu Yanlong, Wang Fan, Chen Li

机构信息

Department of Behavioral Medicine, Wenzhou Seventh People's Hospital, Wenzhou, China.

School of Mental Health, Wenzhou Medical University, Wenzhou, China.

出版信息

Front Psychiatry. 2024 Aug 29;15:1320248. doi: 10.3389/fpsyt.2024.1320248. eCollection 2024.

Abstract

BACKGROUND

Understanding the interplay between psychopathology of alcohol withdrawal syndrome (AWS) in alcohol use disorder (AUD) patients may improve the effectiveness of relapse interventions for AUD. Network theory of mental disorders assumes that mental disorders persist not of a common functional disorder, but from a sustained feedback loop between symptoms, thereby explaining the persistence of AWS and the high relapse rate of AUD. The current study aims to establish a network of AWS, identify its core symptoms and find the bridges between the symptoms which are intervention target to relieve the AWS and break the self-maintaining cycle of AUD.

METHODS

Graphical lasso network were constructed using psychological symptoms of 553 AUD patients. Global network structure, centrality indices, cluster coefficient, and bridge symptom were used to identify the core symptoms of the AWS network and the transmission pathways between different symptom clusters.

RESULTS

The results revealed that: (1) AWS constitutes a stable symptom network with a stability coefficient (CS) of 0.21-0.75. (2) Anger (Strength = 1.52) and hostility (Strength = 0.84) emerged as the core symptom in the AWS network with the highest centrality and low clustering coefficient. (3) Hostility mediates aggression and anxiety; anger mediates aggression and impulsivity in AWS network respectively.

CONCLUSIONS

Anger and hostility may be considered the best intervention targets for researching and treating AWS. Hostility and anxiety, anger and impulsiveness are independent but related dimensions, suggesting that different neurobiological bases may be involved in withdrawal symptoms, which play a similar role in withdrawal syndrome.

摘要

背景

了解酒精使用障碍(AUD)患者酒精戒断综合征(AWS)的精神病理学之间的相互作用,可能会提高AUD复发干预的有效性。精神障碍的网络理论认为,精神障碍并非源于共同的功能障碍,而是源于症状之间持续的反馈循环,从而解释了AWS的持续性和AUD的高复发率。本研究旨在建立一个AWS网络,确定其核心症状,并找到症状之间的桥梁,这些桥梁是缓解AWS和打破AUD自我维持循环的干预目标。

方法

使用553名AUD患者的心理症状构建图形套索网络。采用全局网络结构、中心性指标、聚类系数和桥梁症状来确定AWS网络的核心症状以及不同症状簇之间的传播途径。

结果

结果显示:(1)AWS构成一个稳定的症状网络,稳定系数(CS)为0.21 - 0.75。(2)愤怒(强度 = 1.52)和敌意(强度 = 0.84)成为AWS网络中具有最高中心性和低聚类系数的核心症状。(3)在AWS网络中,敌意介导攻击和焦虑;愤怒分别介导攻击和冲动。

结论

愤怒和敌意可能被认为是研究和治疗AWS的最佳干预目标。敌意和焦虑、愤怒和冲动是独立但相关的维度,这表明不同的神经生物学基础可能参与戒断症状,它们在戒断综合征中发挥类似作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b4f/11390437/fd41b64d64de/fpsyt-15-1320248-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验