Pei Jian, Zhu Fukang, Li Qi
School of Mathematics, Jilin University, Changchun, People's Republic of China.
College of Mathematics, Changchun Normal University, Changchun, People's Republic of China.
J Appl Stat. 2023 Dec 22;51(12):2402-2419. doi: 10.1080/02664763.2023.2297155. eCollection 2024.
For checking time series models, the Ljung-Box, Li-Mak and Zhu-Wang statistics play an important role, which use the Pearson's correlation coefficient to implement (squared) residual (partial) autocorrelation tests. In this paper, we replace the Pearson's correlation coefficient with a new rank correlation coefficient and propose a new test statistic to conduct diagnostic checks for residuals in autoregressive moving average models, autoregressive conditional heteroscedasticity models and integer-valued time series models, respectively. We conduct simulations to assess the performance of the new test statistic, and compare it with existing ones, and the results show the superiority of the proposed one. We use three real examples to exhibit its usefulness.
对于检验时间序列模型,Ljung-Box、Li-Mak和Zhu-Wang统计量发挥着重要作用,它们使用皮尔逊相关系数来进行(平方)残差(偏)自相关检验。在本文中,我们用一种新的秩相关系数取代皮尔逊相关系数,并提出一种新的检验统计量,分别对自回归移动平均模型、自回归条件异方差模型和整数值时间序列模型中的残差进行诊断检验。我们进行模拟以评估新检验统计量的性能,并将其与现有统计量进行比较,结果表明所提出的统计量具有优越性。我们使用三个实际例子来说明其有用性。