Suppr超能文献

基于残差新相关系数的时间序列模型中的诊断检验。

Diagnostic checks in time series models based on a new correlation coefficient of residuals.

作者信息

Pei Jian, Zhu Fukang, Li Qi

机构信息

School of Mathematics, Jilin University, Changchun, People's Republic of China.

College of Mathematics, Changchun Normal University, Changchun, People's Republic of China.

出版信息

J Appl Stat. 2023 Dec 22;51(12):2402-2419. doi: 10.1080/02664763.2023.2297155. eCollection 2024.

Abstract

For checking time series models, the Ljung-Box, Li-Mak and Zhu-Wang statistics play an important role, which use the Pearson's correlation coefficient to implement (squared) residual (partial) autocorrelation tests. In this paper, we replace the Pearson's correlation coefficient with a new rank correlation coefficient and propose a new test statistic to conduct diagnostic checks for residuals in autoregressive moving average models, autoregressive conditional heteroscedasticity models and integer-valued time series models, respectively. We conduct simulations to assess the performance of the new test statistic, and compare it with existing ones, and the results show the superiority of the proposed one. We use three real examples to exhibit its usefulness.

摘要

对于检验时间序列模型,Ljung-Box、Li-Mak和Zhu-Wang统计量发挥着重要作用,它们使用皮尔逊相关系数来进行(平方)残差(偏)自相关检验。在本文中,我们用一种新的秩相关系数取代皮尔逊相关系数,并提出一种新的检验统计量,分别对自回归移动平均模型、自回归条件异方差模型和整数值时间序列模型中的残差进行诊断检验。我们进行模拟以评估新检验统计量的性能,并将其与现有统计量进行比较,结果表明所提出的统计量具有优越性。我们使用三个实际例子来说明其有用性。

相似文献

10
Testing network autocorrelation without replicates.测试无重复的网络自相关性。
PLoS One. 2022 Nov 3;17(11):e0275532. doi: 10.1371/journal.pone.0275532. eCollection 2022.

本文引用的文献

1
Measuring multivariate association and beyond.测量多元关联及其他。
Stat Surv. 2016;10:132-167. doi: 10.1214/16-SS116. Epub 2016 Nov 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验