Suppr超能文献

实践中的精准医学:剖析尿液培养的患病率及抗菌谱以在联邦三级医疗中做出明智决策——经验性抗生素治疗指南

Precision medicine in practice: unravelling the prevalence and antibiograms of urine cultures for informed decision making in federal tertiary care- a guide to empirical antibiotics therapy.

作者信息

Farwa Umme, Wazir Samia, Kursheed Farhan, Shoaib Bisma, Batool Sheza, Shafiq Muhammad

机构信息

Department of Microbiology, Fazaia Medical College, Air University, Islamabad, Pakistan.

Department of Microbiology, Pakistan Institute of Medical Sciences, Islamabad, Pakistan.

出版信息

Iran J Microbiol. 2024 Aug;16(4):477-483. doi: 10.18502/ijm.v16i4.16306.

Abstract

BACKGROUND AND OBJECTIVES

Urinary tract infections (UTIs), one of the most prevalent bacterial infections, are facing limited treatment options due to escalating concern of antibiotic resistance. Urine cultures significantly help in identification of etiological agents responsible for these infections. Assessment of antibiotic susceptibility patterns of these bacteria aids in tackling the emerging concern of antibiotic resistance and establishment of empirical therapy guidelines. Our aim was to determine various agents responsible for urinary tract infections and to assess their antibiotic susceptibility patterns.

MATERIALS AND METHODS

This cross-sectional study was performed over a period of six months from January 2023 to July 2023 in Department of Microbiology of Pakistan Institute of Medical Sciences (PIMS).

RESULTS

Out of 2957 positive samples, Gram negative bacteria were the most prevalent in 1939 (65.6%) samples followed by Gram positive bacteria in 418 (14.1%) and spp. in 269 (9.1%) samples. In gram negative bacteria, was the most prevalent bacteria isolated from 1070 samples (55.2%) followed by in 397 samples (20.5%). In Gram positive bacteria, spp. was the most common bacteria in 213 samples (51%) followed by in 120 samples (28.7%). Amikacin was the most sensitive drug (91%) for Gram negative bacteria. Gram positive bacteria were most susceptible to linezolid (97%-100%).

CONCLUSION

The generation of a hospital tailored antibiogram is essential for the effective management of infections and countering antibiotic resistance. By adopting antimicrobial stewardship strategies by deeper understanding of sensitivity patterns, we can effectively combat antibiotic resistance.

摘要

背景与目的

尿路感染(UTIs)是最常见的细菌感染之一,由于对抗生素耐药性的日益关注,其治疗选择有限。尿培养对于确定这些感染的病原体有很大帮助。评估这些细菌的抗生素敏感性模式有助于应对新出现的抗生素耐药性问题,并制定经验性治疗指南。我们的目的是确定导致尿路感染的各种病原体,并评估它们的抗生素敏感性模式。

材料与方法

本横断面研究于2023年1月至2023年7月在巴基斯坦医学科学研究所(PIMS)微生物学系进行,为期六个月。

结果

在2957份阳性样本中,革兰氏阴性菌在1939份样本(65.6%)中最为常见,其次是革兰氏阳性菌在418份样本(14.1%)中,以及[具体菌属]在269份样本(9.1%)中。在革兰氏阴性菌中,[具体菌属]是从1070份样本(55.2%)中分离出的最常见细菌,其次是[另一种菌属]在397份样本(20.5%)中。在革兰氏阳性菌中,[具体菌属]是213份样本(51%)中最常见的细菌,其次是[另一种菌属]在120份样本(28.7%)中。阿米卡星是对革兰氏阴性菌最敏感的药物(91%)。革兰氏阳性菌对利奈唑胺最敏感(97%-100%)。

结论

生成针对医院的抗菌谱对于有效管理感染和对抗抗生素耐药性至关重要。通过更深入地了解敏感性模式采取抗菌管理策略,我们可以有效地对抗抗生素耐药性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/224a/11389760/b72bf80c7baf/IJM-16-477-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验