Suppr超能文献

仿生多通道丝素神经导管用于脊髓损伤修复的细胞时空分布

Biomimetic Multichannel Silk Nerve Conduits With Multicellular Spatiotemporal Distributions for Spinal Cord Injury Repair.

机构信息

Department of Spine Surgery, Second Xiangya Hospital of Central South University, Changsha, 410011, China.

Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.

出版信息

Adv Mater. 2024 Nov;36(44):e2411628. doi: 10.1002/adma.202411628. Epub 2024 Sep 13.

Abstract

Bioengineered nerve conduits have shown great promise for spinal cord injury (SCI) repair, while their practical values are limited by poor regenerative efficacy and lack of multi-level structural design. Here, inspired by the ingenious anatomy of natural spinal cords, a biomimetic multichannel silk nerve conduit (namely BNC@MSCs/SCs) with multicellular spatiotemporal distributions for effective SCI repair is presented. The biomimetic silk nerve conduit (BNC) with hierarchical channels and aligned pore structures is prepared via a modified directional freeze-casting strategy. Such hierarchical structures provide appropriate space for the mesenchymal stem cells (MSCs) and Schwann cells (SCs) settled in specific channels, which contributes to the generation of BNC@MSCs/SCs resembling the cellular spatiotemporal distributions of natural spinal cords. The in vitro results reveal the facilitated SC migration and MSC differentiation in such BNC@MSCs/SCs multicellular system, which further promotes the tube formation and cell migration of endothelial cells as well as M2 polarization of macrophages. Moreover, BNC@MSCs/SCs can effectively promote the tissue repair and function recovery in SCI rats by attenuating glial scar formation while promoting neuron regeneration and myelin sheath reconstruction. Thus, it is believed that the biomimetic multichannel silk nerve conduits with multicellular spatiotemporal distributions are valuable for SCI repair and other neural tissue regeneration.

摘要

生物工程神经导管在脊髓损伤 (SCI) 修复方面显示出巨大的应用前景,但由于再生效果差和缺乏多层次结构设计,其实际应用价值受到限制。受天然脊髓巧妙解剖结构的启发,本文设计了一种具有多层次通道和取向孔结构的仿生多通道丝神经导管(即 BNC@MSCs/SCs),用于有效修复 SCI。通过改良的定向冷冻铸造策略制备了具有分级通道和取向孔结构的仿生丝神经导管(BNC)。这种分级结构为特定通道中定居的间充质干细胞(MSCs)和施万细胞(SCs)提供了合适的空间,有助于产生类似于天然脊髓细胞时空分布的 BNC@MSCs/SCs。体外结果表明,在这种 BNC@MSCs/SCs 多细胞体系中,SCs 的迁移和 MSC 的分化得到了促进,这进一步促进了内皮细胞的管形成和细胞迁移以及巨噬细胞的 M2 极化。此外,BNC@MSCs/SCs 通过减轻神经胶质瘢痕形成,促进神经元再生和髓鞘重建,有效促进 SCI 大鼠的组织修复和功能恢复。因此,我们相信具有多层次通道和时空分布的仿生多通道丝神经导管对于 SCI 修复和其他神经组织再生具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验