Suppr超能文献

多通道生物活性丝纳米纤维导管引导并增强脊髓损伤后的轴突再生。

Multichannel Bioactive Silk Nanofiber Conduits Direct and Enhance Axonal Regeneration after Spinal Cord Injury.

作者信息

You Renchuan, Zhang Qiang, Li Xiufang, Yan Shuqin, Luo Zuwei, Qu Jing, Li Mingzhong

机构信息

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.

出版信息

ACS Biomater Sci Eng. 2020 Aug 10;6(8):4677-4686. doi: 10.1021/acsbiomaterials.0c00698. Epub 2020 Jul 29.

Abstract

After a spinal cord injury, axonal regeneration over long distances is challenging due to the lack of physical guidance cues and bioactive signals. In this study, a multichannel bioactive silk fibroin nanofiber conduit was fabricated to improve spinal cord injury repair by enhancing axonal regeneration. The conduit was composed of longitudinally oriented silk fibroin nanofibers and then functionalized with laminin. In vitro, the bioactive conduits could promote neuron-like development and directional neurite extension of PC12 cells by providing a bioactive stimulus and physical guidance. In a spinal cord injury model in Sprague-Dawley rats, the biofunctionalized conduits displayed superior integration with the host tissue due to enhanced cell infiltration and tissue ingrowth. The glial scar was significantly reduced, allowing axonal ingrowth along with the channel direction. Compared to a single-channel conduit, the multichannel conduit improved spinal cord regeneration by boosting tissue ingrowth and axonal regeneration, indicating that the conduit architectures play critical roles in spinal cord regeneration. These silk fibroin conduits, along with the multichannel architecture, nanoscale cues, and the ability to bind bioactive compounds, represent promising candidates for spinal cord regeneration.

摘要

脊髓损伤后,由于缺乏物理引导线索和生物活性信号,轴突的长距离再生具有挑战性。在本研究中,制备了一种多通道生物活性丝素蛋白纳米纤维导管,通过增强轴突再生来改善脊髓损伤修复。该导管由纵向排列的丝素蛋白纳米纤维组成,然后用层粘连蛋白进行功能化处理。在体外,生物活性导管通过提供生物活性刺激和物理引导,可促进PC12细胞的神经元样发育和定向神经突延伸。在Sprague-Dawley大鼠的脊髓损伤模型中,生物功能化导管由于细胞浸润和组织长入增强,与宿主组织表现出更好的整合。胶质瘢痕明显减少,使轴突能够沿通道方向长入。与单通道导管相比,多通道导管通过促进组织长入和轴突再生改善了脊髓再生,表明导管结构在脊髓再生中起着关键作用。这些丝素蛋白导管,连同多通道结构、纳米级线索以及结合生物活性化合物的能力,是脊髓再生的有希望的候选者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验