Suppr超能文献

DIRT/µ:使用组合优化自动提取根毛特征。

DIRT/µ: automated extraction of root hair traits using combinatorial optimization.

作者信息

Pietrzyk Peter, Phan-Udom Neen, Chutoe Chartinun, Pingault Lise, Roy Ankita, Libault Marc, Saengwilai Patompong Johns, Bucksch Alexander

机构信息

Department of Plant Biology, University of Georgia, 120 Carlton Street, Athens, GA 30602, USA.

Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400Thailand.

出版信息

J Exp Bot. 2025 Jan 10;76(2):285-298. doi: 10.1093/jxb/erae385.

Abstract

As with phenotyping of any microscopic appendages, such as cilia or antennae, phenotyping of root hairs has been a challenge due to their complex intersecting arrangements in two-dimensional images and the technical limitations of automated measurements. Digital Imaging of Root Traits at Microscale (DIRT/μ) is a newly developed algorithm that addresses this issue by computationally resolving intersections and extracting individual root hairs from two-dimensional microscopy images. This solution enables automatic and precise trait measurements of individual root hairs. DIRT/μ rigorously defines a set of rules to resolve intersecting root hairs and minimizes a newly designed cost function to combinatorically identify each root hair in the microscopy image. As a result, DIRT/μ accurately measures traits such as root hair length distribution and root hair density, which are impractical for manual assessment. We tested DIRT/μ on three datasets to validate its performance and showcase potential applications. By measuring root hair traits in a fraction of the time manual methods require, DIRT/μ eliminates subjective biases from manual measurements. Automating individual root hair extraction accelerates phenotyping and quantifies trait variability within and among plants, creating new possibilities to characterize root hair function and their underlying genetics.

摘要

与对任何微观附属物(如纤毛或触角)进行表型分析一样,由于根毛在二维图像中的复杂交叉排列以及自动测量的技术限制,对根毛进行表型分析一直是一项挑战。微观尺度下根系性状的数字成像(DIRT/μ)是一种新开发的算法,它通过计算解决交叉问题并从二维显微镜图像中提取单个根毛来解决这一问题。该解决方案能够对单个根毛进行自动且精确的性状测量。DIRT/μ严格定义了一组规则来解析交叉的根毛,并最小化一个新设计的成本函数,以便组合识别显微镜图像中的每一根根毛。结果,DIRT/μ能够准确测量根毛长度分布和根毛密度等性状,而这些性状通过人工评估是不切实际的。我们在三个数据集上测试了DIRT/μ,以验证其性能并展示潜在应用。通过在人工方法所需时间的一小部分内测量根毛性状,DIRT/μ消除了人工测量中的主观偏差。自动提取单个根毛加速了表型分析,并量化了植物内部和植物之间的性状变异性,为表征根毛功能及其潜在遗传学创造了新的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2888/11714758/7968710dd94b/erae385_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验