文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

RootNav 2.0:用于复杂植物根系结构自动导航的深度学习。

RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures.

机构信息

School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK.

School of Biosciences, Sutton Bonington Campus, University of Nottingham, Nottingham LE12 5RD, UK.

出版信息

Gigascience. 2019 Nov 1;8(11). doi: 10.1093/gigascience/giz123.


DOI:10.1093/gigascience/giz123
PMID:31702012
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6839032/
Abstract

BACKGROUND: In recent years quantitative analysis of root growth has become increasingly important as a way to explore the influence of abiotic stress such as high temperature and drought on a plant's ability to take up water and nutrients. Segmentation and feature extraction of plant roots from images presents a significant computer vision challenge. Root images contain complicated structures, variations in size, background, occlusion, clutter and variation in lighting conditions. We present a new image analysis approach that provides fully automatic extraction of complex root system architectures from a range of plant species in varied imaging set-ups. Driven by modern deep-learning approaches, RootNav 2.0 replaces previously manual and semi-automatic feature extraction with an extremely deep multi-task convolutional neural network architecture. The network also locates seeds, first order and second order root tips to drive a search algorithm seeking optimal paths throughout the image, extracting accurate architectures without user interaction. RESULTS: We develop and train a novel deep network architecture to explicitly combine local pixel information with global scene information in order to accurately segment small root features across high-resolution images. The proposed method was evaluated on images of wheat (Triticum aestivum L.) from a seedling assay. Compared with semi-automatic analysis via the original RootNav tool, the proposed method demonstrated comparable accuracy, with a 10-fold increase in speed. The network was able to adapt to different plant species via transfer learning, offering similar accuracy when transferred to an Arabidopsis thaliana plate assay. A final instance of transfer learning, to images of Brassica napus from a hydroponic assay, still demonstrated good accuracy despite many fewer training images. CONCLUSIONS: We present RootNav 2.0, a new approach to root image analysis driven by a deep neural network. The tool can be adapted to new image domains with a reduced number of images, and offers substantial speed improvements over semi-automatic and manual approaches. The tool outputs root architectures in the widely accepted RSML standard, for which numerous analysis packages exist (http://rootsystemml.github.io/), as well as segmentation masks compatible with other automated measurement tools. The tool will provide researchers with the ability to analyse root systems at larget scales than ever before, at a time when large scale genomic studies have made this more important than ever.

摘要

背景:近年来,定量分析根系生长变得越来越重要,它可以作为一种方法来探索非生物胁迫(如高温和干旱)对植物吸收水分和养分能力的影响。从图像中对植物根系进行分割和特征提取是计算机视觉面临的一个重大挑战。根系图像包含复杂的结构、大小变化、背景、遮挡、杂乱和光照条件变化。我们提出了一种新的图像分析方法,该方法可以从各种成像设置的不同植物物种中全自动提取复杂的根系系统结构。受现代深度学习方法的驱动,RootNav 2.0 用一个极其深的多任务卷积神经网络架构取代了以前的手动和半自动特征提取。该网络还定位种子、一级和二级根尖,驱动搜索算法在整个图像中寻找最佳路径,无需用户交互即可提取准确的结构。

结果:我们开发并训练了一个新的深度网络架构,该架构明确地将局部像素信息与全局场景信息结合起来,以便在高分辨率图像中准确地分割小的根系特征。该方法在从小麦(Triticum aestivum L.)幼苗试验获得的图像上进行了评估。与原始 RootNav 工具的半自动分析相比,该方法的准确性相当,速度提高了 10 倍。通过迁移学习,该网络可以适应不同的植物物种,当转移到拟南芥平板试验时,仍然具有相似的准确性。最后一次通过迁移学习,将其应用于水培试验中的油菜(Brassica napus)图像,尽管训练图像较少,但仍然具有良好的准确性。

结论:我们提出了由深度神经网络驱动的新的根系图像分析方法 RootNav 2.0。该工具可以用较少的图像适应新的图像领域,并提供比半自动和手动方法有显著的速度提高。该工具以广泛接受的 RSML 标准输出根系结构,该标准有许多分析包(http://rootsystemml.github.io/),以及与其他自动测量工具兼容的分割掩模。该工具将为研究人员提供在大规模基因组研究比以往任何时候都更重要的时代以前所未有的规模分析根系系统的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/afc3242f5d56/giz123fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/e44f8aa6b4c5/giz123fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/ee4e9d76ef41/giz123fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/f0829f0650ad/giz123fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/7f273a4c296a/giz123fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/c4a0c01c78a4/giz123fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/92a42a48bb81/giz123fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/48ccf46f3e65/giz123fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/a83d85022e56/giz123fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/d7288df55f1d/giz123fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/17274c0c7fd8/giz123fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/afc3242f5d56/giz123fig11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/e44f8aa6b4c5/giz123fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/ee4e9d76ef41/giz123fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/f0829f0650ad/giz123fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/7f273a4c296a/giz123fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/c4a0c01c78a4/giz123fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/92a42a48bb81/giz123fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/48ccf46f3e65/giz123fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/a83d85022e56/giz123fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/d7288df55f1d/giz123fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/17274c0c7fd8/giz123fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/6839032/afc3242f5d56/giz123fig11.jpg

相似文献

[1]
RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures.

Gigascience. 2019-11-1

[2]
RootNav: navigating images of complex root architectures.

Plant Physiol. 2013-6-13

[3]
Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.

Elife. 2021-1-18

[4]
Three Dimensional Root CT Segmentation using Multi-Resolution Encoder-Decoder Networks.

IEEE Trans Image Process. 2020-5-12

[5]
Application of convolutional neural networks towards nuclei segmentation in localization-based super-resolution fluorescence microscopy images.

BMC Bioinformatics. 2021-6-15

[6]
A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition.

Sensors (Basel). 2017-9-4

[7]
Simultaneous Direct Depth Estimation and Synthesis Stereo for Single Image Plant Root Reconstruction.

IEEE Trans Image Process. 2021

[8]
Image generation by GAN and style transfer for agar plate image segmentation.

Comput Methods Programs Biomed. 2020-2

[9]
Multi-Scale deep learning framework for cochlea localization, segmentation and analysis on clinical ultra-high-resolution CT images.

Comput Methods Programs Biomed. 2020-7

[10]
Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging.

Comput Med Imaging Graph. 2021-6

引用本文的文献

[1]
Research on Fine-Grained Phenotypic Analysis of Temporal Root Systems - Improved YoloV8seg Applied for Fine-Grained Analysis of In Situ Root Temporal Phenotypes.

Adv Sci (Weinh). 2025-2

[2]
Automated seminal root angle measurement with corrective annotation.

AoB Plants. 2024-9-19

[3]
Genome-Wide Association study for root system architecture traits in field soybean [Glycine max (L.) Merr.].

Sci Rep. 2024-10-23

[4]
The State of the Art in Root System Architecture Image Analysis Using Artificial Intelligence: A Review.

Plant Phenomics. 2024-4-18

[5]
Fast and Efficient Root Phenotyping via Pose Estimation.

Plant Phenomics. 2024-4-12

[6]
GWAS supported by computer vision identifies large numbers of candidate regulators of in planta regeneration in Populus trichocarpa.

G3 (Bethesda). 2024-4-3

[7]
Automatic Root Length Estimation from Images Acquired In Situ without Segmentation.

Plant Phenomics. 2024-1-16

[8]
Explainable deep learning in plant phenotyping.

Front Artif Intell. 2023-9-19

[9]
GWAS identifies candidate genes controlling adventitious rooting in .

Hortic Res. 2023-6-14

[10]
ACORBA: Automated workflow to measure root tip angle dynamics.

Quant Plant Biol. 2022-5-24

本文引用的文献

[1]
Plant Phenotyping: Past, Present, and Future.

Plant Phenomics. 2019-3-26

[2]
OpenAlea: a visual programming and component-based software platform for plant modelling.

Funct Plant Biol. 2008-12

[3]
Uncovering the hidden half of plants using new advances in root phenotyping.

Curr Opin Biotechnol. 2018-7-19

[4]
Deep machine learning provides state-of-the-art performance in image-based plant phenotyping.

Gigascience. 2017-10-1

[5]
Deep Plant Phenomics: A Deep Learning Platform for Complex Plant Phenotyping Tasks.

Front Plant Sci. 2017-7-7

[6]
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.

IEEE Trans Pattern Anal Mach Intell. 2017-1-2

[7]
Using Deep Learning for Image-Based Plant Disease Detection.

Front Plant Sci. 2016-9-22

[8]
Fully Convolutional Networks for Semantic Segmentation.

IEEE Trans Pattern Anal Mach Intell. 2016-5-24

[9]
Machine Learning for High-Throughput Stress Phenotyping in Plants.

Trends Plant Sci. 2015-12-1

[10]
Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics.

Plant Methods. 2015-11-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索