Suppr超能文献

机器学习确定了一个 5 种血清细胞因子的面板,用于早期检测慢性萎缩性胃炎患者。

Machine learning identifies a 5-serum cytokine panel for the early detection of chronic atrophy gastritis patients.

机构信息

Department of Gastroenterology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, National Clinical Research Center for Digestive Diseases (Xi 'an) Jiangsu Branch Wuxi, Jiangsu, China.

AliveX Biotech, Shanghai, China.

出版信息

Cancer Biomark. 2024;41(1):25-40. doi: 10.3233/CBM-240023.

Abstract

BACKGROUND

Chronic atrophy gastritis (CAG) is a high-risk pre-cancerous lesion for gastric cancer (GC). The early and accurate detection and discrimination of CAG from benign forms of gastritis (e.g. chronic superficial gastritis, CSG) is critical for optimal management of GC. However, accurate non-invasive methods for the diagnosis of CAG are currently lacking. Cytokines cause inflammation and drive cancer transformation in GC, but their utility as a diagnostic for CAG is poorly characterized.

METHODS

Blood samples were collected, and 40 cytokines were quantified using a multiplexed immunoassay from 247 patients undergoing screening via endoscopy. Patients were divided into discovery and validation sets. Each cytokine importance was ranked using the feature selection algorithm Boruta. The cytokines with the highest feature importance were selected for machine learning (ML), using the LightGBM algorithm.

RESULTS

Five serum cytokines (IL-10, TNF-α, Eotaxin, IP-10 and SDF-1a) that could discriminate between CAG and CSG patients were identified and used for predictive model construction. This model was robust and could identify CAG patients with high performance (AUC = 0.88, Accuracy = 0.78). This compared favorably to the conventional approach using the PGI/PGII ratio (AUC = 0.59).

CONCLUSION

Using state-of-the-art ML and a blood-based immunoassay, we developed an improved non-invasive screening method for the detection of precancerous GC lesions.

FUNDING

Supported in part by grants from: Jiangsu Science and Technology Project (no. BK20211039); Top Talent Support Program for young and middle-aged people of Wuxi Health Committee (BJ2023008); Medical Key Discipline Program of Wuxi Health Commission (ZDXK2021010), Wuxi Science and Technology Bureau Project (no. N20201004); Scientific Research Program of Wuxi Health Commission (Z202208, J202104).

摘要

背景

慢性萎缩性胃炎(CAG)是胃癌(GC)的高危癌前病变。早期准确地检测和区分 CAG 与良性胃炎(如慢性浅表性胃炎,CSG)对于 GC 的最佳管理至关重要。然而,目前缺乏用于诊断 CAG 的准确非侵入性方法。细胞因子在 GC 中引起炎症并驱动癌症转化,但它们作为 CAG 诊断的用途尚未得到充分描述。

方法

从 247 名通过内镜筛查的患者中采集血液样本,并使用多重免疫分析法定量 40 种细胞因子。患者被分为发现和验证集。使用特征选择算法 Boruta 对每种细胞因子的重要性进行排名。选择特征重要性最高的细胞因子用于机器学习(ML),使用 LightGBM 算法。

结果

鉴定出 5 种血清细胞因子(IL-10、TNF-α、Eotaxin、IP-10 和 SDF-1a),可区分 CAG 和 CSG 患者,并用于预测模型构建。该模型具有稳健性,可以识别出具有高性能的 CAG 患者(AUC=0.88,准确性=0.78)。这与使用 PGI/PGII 比值的传统方法(AUC=0.59)相比具有优势。

结论

使用最先进的 ML 和基于血液的免疫分析,我们开发了一种用于检测癌前 GC 病变的改进的非侵入性筛查方法。

资助

部分由以下项目资助:江苏省科技项目(编号:BK20211039);无锡市卫生委员会青年和中年人才支持计划(BJ2023008);无锡市卫生委员会医学重点学科计划(ZDXK2021010),无锡市科技局项目(编号:N20201004);无锡市卫生委员会科研项目(Z202208、J202104)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba6c/11495322/caf500f28cae/cbm-41-cbm240023-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验