Suppr超能文献

SwinDFU-Net:用于糖尿病足溃疡感染识别的深度学习变压器网络

SwinDFU-Net: Deep learning transformer network for infection identification in diabetic foot ulcer.

作者信息

M G Sumithra, Venkatesan Chandran

出版信息

Technol Health Care. 2025;33(1):601-618. doi: 10.3233/THC-241444.

Abstract

BACKGROUND

The identification of infection in diabetic foot ulcers (DFUs) is challenging due to variability within classes, visual similarity between classes, reduced contrast with healthy skin, and presence of artifacts. Existing studies focus on visual characteristics and tissue classification rather than infection detection, critical for assessing DFUs and predicting amputation risk.

OBJECTIVE

To address these challenges, this study proposes a deep learning model using a hybrid CNN and Swin Transformer architecture for infection classification in DFU images. The aim is to leverage end-to-end mapping without prior knowledge, integrating local and global feature extraction to improve detection accuracy.

METHODS

The proposed model utilizes a hybrid CNN and Swin Transformer architecture. It employs the Grad CAM technique to visualize the decision-making process of the CNN and Transformer blocks. The DFUC Challenge dataset is used for training and evaluation, emphasizing the model's ability to accurately classify DFU images into infected and non-infected categories.

RESULTS

The model achieves high performance metrics: sensitivity (95.98%), specificity (97.08%), accuracy (96.52%), and Matthews Correlation Coefficient (0.93). These results indicate the model's effectiveness in quickly diagnosing DFU infections, highlighting its potential as a valuable tool for medical professionals.

CONCLUSION

The hybrid CNN and Swin Transformer architecture effectively combines strengths from both models, enabling accurate classification of DFU images as infected or non-infected, even in complex scenarios. The use of Grad CAM provides insights into the model's decision process, aiding in identifying infected regions within DFU images. This approach shows promise for enhancing clinical assessment and management of DFU infections.

摘要

背景

由于类别内的变异性、类别间的视觉相似性、与健康皮肤的对比度降低以及伪影的存在,糖尿病足溃疡(DFU)感染的识别具有挑战性。现有研究侧重于视觉特征和组织分类,而非感染检测,而感染检测对于评估DFU和预测截肢风险至关重要。

目的

为应对这些挑战,本研究提出一种深度学习模型,该模型采用卷积神经网络(CNN)和Swin Transformer混合架构对DFU图像中的感染进行分类。其目的是在无需先验知识的情况下利用端到端映射,整合局部和全局特征提取以提高检测准确性。

方法

所提出的模型采用CNN和Swin Transformer混合架构。它运用Grad CAM技术来可视化CNN和Transformer模块的决策过程。DFUC挑战数据集用于训练和评估,着重检验该模型将DFU图像准确分类为感染和未感染类别的能力。

结果

该模型实现了较高的性能指标:灵敏度(95.98%)、特异性(97.08%)、准确率(96.52%)和马修斯相关系数(0.93)。这些结果表明该模型在快速诊断DFU感染方面的有效性,凸显了其作为医学专业人员有价值工具的潜力。

结论

CNN和Swin Transformer混合架构有效地结合了两种模型的优势,即使在复杂场景下也能将DFU图像准确分类为感染或未感染。Grad CAM的使用为模型的决策过程提供了见解,有助于识别DFU图像中的感染区域。这种方法在增强DFU感染的临床评估和管理方面显示出前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验