Suppr超能文献

4D 流 MRI 速度不确定度量化。

4D flow MRI velocity uncertainty quantification.

机构信息

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.

School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA.

出版信息

Magn Reson Med. 2025 Jan;93(1):397-410. doi: 10.1002/mrm.30287. Epub 2024 Sep 13.

Abstract

PURPOSE

An automatic method is presented for estimating 4D flow MRI velocity measurement uncertainty in each voxel. The velocity distance (VD) metric, a statistical distance between the measured velocity and local error distribution, is introduced as a novel measure of 4D flow MRI velocity measurement quality.

METHODS

The method uses mass conservation to assess the local velocity error variance and the standardized difference of means (SDM) velocity to estimate the velocity error correlations. VD is evaluated as the Mahalanobis distance between the local velocity measurement and the local error distribution. The uncertainty model is validated synthetically and tested in vitro under different flow resolutions and noise levels. The VD's application is demonstrated on two in vivo thoracic vasculature 4D flow datasets.

RESULTS

Synthetic results show the proposed uncertainty quantification method is sensitive to aliased regions across various velocity-to-noise ratios and assesses velocity error correlations in four- and six-point acquisitions with correlation errors at or under 3.2%. In vitro results demonstrate the method's sensitivity to spatial resolution, venc settings, partial volume effects, and phase wrapping error sources. Applying VD to assess in vivo 4D flow MRI in the aorta demonstrates the expected increase in measured velocity quality with contrast administration and systolic flow.

CONCLUSION

The proposed 4D flow MRI uncertainty quantification method assesses velocity measurement error owing to sources including noise, intravoxel phase dispersion, and velocity aliasing. This method enables rigorous comparison of 4D flow MRI datasets obtained in longitudinal studies, across patient populations, and with different MRI systems.

摘要

目的

提出一种自动方法,用于估计每个体素中 4D 流 MRI 速度测量的不确定性。引入速度距离(VD)度量作为一种新的 4D 流 MRI 速度测量质量的度量,它是测量速度与局部误差分布之间的统计距离。

方法

该方法使用质量守恒来评估局部速度误差方差和标准化均值差异(SDM)速度,以估计速度误差相关性。VD 被评估为局部速度测量值与局部误差分布之间的马氏距离。该不确定性模型在不同的流分辨率和噪声水平下进行了综合验证和体外测试。VD 的应用在两个体内胸血管 4D 流数据集上得到了演示。

结果

合成结果表明,所提出的不确定性量化方法对各种速度与噪声比的混淆区域敏感,并评估了四点和六点采集的速度误差相关性,相关误差在 3.2%或以下。体外结果表明,该方法对空间分辨率、venc 设置、部分体积效应和相位缠绕误差源敏感。将 VD 应用于评估主动脉中的体内 4D 流 MRI 表明,随着对比剂的给药和收缩期血流的增加,测量速度质量的预期增加。

结论

所提出的 4D 流 MRI 不确定性量化方法评估了由于噪声、体素内相位分散和速度混淆等来源引起的速度测量误差。该方法能够对纵向研究、不同患者群体和不同 MRI 系统获得的 4D 流 MRI 数据集进行严格比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验