Suppr超能文献

人工智能赋能罕见病研究:过去二十年的文献计量学视角

Artificial intelligence empowering rare diseases: a bibliometric perspective over the last two decades.

机构信息

7T Magnetic Resonance Imaging Translational Medical Center, Department of Radiology, Southwest Hospital, Army Medical University, (Third Military Medical University), 30 Gao Tan Yan St, Chongqing, 400038, China.

出版信息

Orphanet J Rare Dis. 2024 Sep 13;19(1):345. doi: 10.1186/s13023-024-03352-1.

Abstract

OBJECTIVE

To conduct a comprehensive bibliometric analysis of the application of artificial intelligence (AI) in Rare diseases (RDs), with a focus on analyzing publication output, identifying leading contributors by country, assessing the extent of international collaboration, tracking the emergence of research hotspots, and detecting trends through keyword bursts.

METHODS

In this bibliometric study, we identified and retrieved publications on AI applications in RDs spanning 2003 to 2023 from the Web of Science (WoS). We conducted a global research landscape analysis and utilized CiteSpace to perform keyword clustering and burst detection in this field.

RESULTS

A total of 1501 publications were included in this study. The evolution of AI applications in RDs progressed through three stages: the start-up period (2003-2010), the steady development period (2011-2018), and the accelerated growth period (2019-2023), reflecting this field's increasing importance and impact at the time of the study. These studies originated from 85 countries, with the United States as the leading contributor. "Mutation", "Diagnosis", and "Management" were the top three keywords with high frequency. Keyword clustering analysis identified gene identification, effective management, and personalized treatment as three primary research areas of AI applications in RDs. Furthermore, the keyword burst detection indicated a growing interest in the areas of "biomarker", "predictive model", and "data mining", highlighting their potential to shape future research directions.

CONCLUSIONS

Over two decades, research on the AI applications in RDs has made remarkable progress and shown promising results in the development. Advancing international transboundary cooperation is essential moving forward. Utilizing AI will play a more crucial role across the spectrum of RDs management, encompassing rapid diagnosis, personalized treatment, drug development, data integration and sharing, and continuous monitoring and care.

摘要

目的

对人工智能(AI)在罕见病(RDs)中的应用进行全面的文献计量分析,重点分析出版物产出,确定国家领先贡献者,评估国际合作程度,跟踪研究热点的出现,并通过关键词突现检测趋势。

方法

在这项文献计量研究中,我们从 Web of Science(WoS)中确定并检索了 2003 年至 2023 年 AI 在 RDs 中的应用出版物。我们对全球研究景观进行了分析,并在该领域使用 CiteSpace 进行了关键词聚类和突现检测。

结果

这项研究共纳入了 1501 篇出版物。AI 在 RDs 中的应用发展经历了三个阶段:启动期(2003-2010 年)、稳定发展期(2011-2018 年)和加速增长期(2019-2023 年),反映了该领域在研究时的重要性和影响力不断增加。这些研究起源于 85 个国家,美国是主要贡献者。“突变”、“诊断”和“管理”是出现频率最高的前三个关键词。关键词聚类分析确定了基因识别、有效管理和个性化治疗是 AI 在 RDs 中应用的三个主要研究领域。此外,关键词突现检测表明,人们对“生物标志物”、“预测模型”和“数据挖掘”领域的兴趣日益浓厚,这突显了它们在塑造未来研究方向方面的潜力。

结论

在过去的二十年中,AI 在 RDs 中的应用研究取得了显著进展,并在发展方面取得了有希望的结果。推进国际跨境合作至关重要。在 RDs 管理的各个方面,包括快速诊断、个性化治疗、药物开发、数据集成和共享以及持续监测和护理,利用 AI 将发挥更关键的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b38/11401438/9b25b5d15339/13023_2024_3352_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验