Suppr超能文献

一种基于多域多尺度特征融合算法的优质新鲜花椒分选方法。

A Method for Sorting High-Quality Fresh Sichuan Pepper Based on a Multi-Domain Multi-Scale Feature Fusion Algorithm.

作者信息

Xiang Pengjun, Pan Fei, Duan Xuliang, Yang Daizhuang, Hu Mengdie, He Dawei, Zhao Xiaoyu, Huang Fang

机构信息

College of Information Engineering, Sichuan Agricultural University, Ya'an 625014, China.

Ya'an Digital Agricultural Engineering Technology Research Center, Ya'an 625014, China.

出版信息

Foods. 2024 Aug 30;13(17):2776. doi: 10.3390/foods13172776.

Abstract

Post-harvest selection of high-quality Sichuan pepper is a critical step in the production process. To achieve this, a visual system needs to analyze Sichuan pepper with varying postures and maturity levels. To quickly and accurately sort high-quality fresh Sichuan pepper, this study proposes a multi-scale frequency domain feature fusion module (MSF3M) and a multi-scale dual-domain feature fusion module (MS-DFFM) to construct a multi-scale, multi-domain fusion algorithm for feature fusion of Sichuan pepper images. The MultiDomain YOLOv8 Model network is then built to segment and classify the target Sichuan pepper, distinguishing the maturity level of individual Sichuan peppercorns. A selection method based on the average local pixel value difference is proposed for sorting high-quality fresh Sichuan pepper. Experimental results show that the MultiDomain YOLOv8-seg achieves an mAP50 of 88.8% for the segmentation of fresh Sichuan pepper, with a model size of only 5.84 MB. The MultiDomain YOLOv8-cls excels in Sichuan pepper maturity classification, with an accuracy of 98.34%. Compared to the YOLOv8 baseline model, the MultiDomain YOLOv8 model offers higher accuracy and a more lightweight structure, making it highly effective in reducing misjudgments and enhancing post-harvest processing efficiency in agricultural applications, ultimately increasing producer profits.

摘要

花椒采后优质筛选是生产过程中的关键环节。为此,需要一个视觉系统来分析姿态各异、成熟度不同的花椒。为了快速准确地分拣出优质新鲜花椒,本研究提出了一种多尺度频域特征融合模块(MSF3M)和一种多尺度双域特征融合模块(MS-DFFM),构建用于花椒图像特征融合的多尺度、多域融合算法。然后构建多域YOLOv8模型网络对目标花椒进行分割和分类,区分单个花椒的成熟度。提出了一种基于局部像素值平均差异的筛选方法来分拣优质新鲜花椒。实验结果表明,多域YOLOv8-seg在新鲜花椒分割上的mAP50达到88.8%,模型大小仅为5.84MB。多域YOLOv8-cls在花椒成熟度分类方面表现出色,准确率为98.34%。与YOLOv8基线模型相比,多域YOLOv8模型具有更高的准确率和更轻量级的结构,在减少误判和提高农业应用中的采后处理效率方面非常有效,最终增加生产者利润。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d5f/11394895/96ca7605b831/foods-13-02776-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验